

Fibre Networks for the Square Kilometre Array (SKA)

Roshene McCool

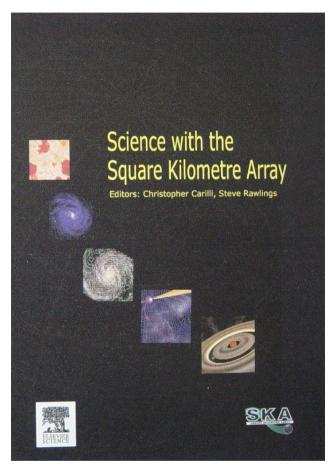
Domain Specialist in Signal Transport and Networks

SKA Program Development Office

mccool@skatelescope.org

Contents

- SKA Description
 - Science the array will target
 - Characteristics of the array
 - Animation Visualising the array
- Signal Transport and Networks for the SKA
- Challenges for the Signal Transport and Networks in the SKA


What is the SKA for?

SPDO

Five Key Science Projects (KSPs)

- 1. Probing the Dark Ages
- 2. Galaxy Evolution, Cosmology, & Dark Energy
- 3. The Origin & Evolution of Cosmic Magnetism
- 4. Strong Field Tests of Gravity Using Pulsars and Black Holes
- 5. The Cradle of Life/Astrobiology

... plus The Exploration of the Unknown as an underlying philosophy for design of the instrument

The Square Kilometre Array SPDO

4 prime characteristics

- ➤ very large collecting area (km²) → sensitivity to detect and image hydrogen in the early universe
 - > sensitivity 40 x EVLA, 50 x LOFAR
- ➤ very-large-angle field of view → fast surveying capability over the whole sky
 - ➤ survey speed ~10000 x EVLA with FoV=1 sq. deg.
- wide frequency range required for the Science Reference Mission

> low: 70-300 MHz

> mid: 300 MHz-10 GHz

➤ large physical extent (3000+ km) → capability for detailed imaging of compact objects and astrometry with milli-arcsec resolution

Signal Transport & Networks for the SKA

SPDO

Data Network

For transporting astronomical signals to a central processing facility (CPF)

Timing Network

 For the distribution of local oscillator signals for clocks and down converters.

A Monitor & Control Network (M&C)

Including comms and required redundancy

Connections from the CPF to the outside world

For the distribution of imaging data to regional centres

High Volume, High Speed Interconnects

Not fully defined but significant data centre style interconnects will be required

Data Network – Local Analogue Links

- Local limited range.
- With a bandwidth of upto 10 GHz
- Photonics links to reduce EMC
- No frequency conversion required
 - Removes requirement for LO distribution
- Require high degrees of linearity and stability to meet dynamic range imaging requirements (70 dB)

Data Networks characterised SPDO

The data is not, in its own right, valuable.

The network is deterministic.

The data traffic is unidirectional

The data rates are large

Data Network -Bit Rates

SPDO

Representative Implementation	Number of stations or dishes	bit rate per station or dish (Gbits/s)*	Maximum baseline of transmission (km)
WBSPF Phase 1 Phase 2	<i>250</i> 3300	40 Gbps 80 Gbps	100 3000
PAFs Phase 2	1000	1840	180
Sparse AA Phase 1 Phase 2	<i>50</i> 250	33440 (max) 33440 (max)	<i>100</i> 180
Dense AA	250	16800	180

Ref: * SKA System CoDR High Level Description Document (highly dependent on final design)

Timing Networks Characterised

SPDO

Timing is critical

Round trip correction is likely to be required.

Baselines upto 3,000 km

UTC on GPS timescales

Preliminary Requirements

- Within 2 ps over a 1 second timescale
- 4 ps over timescales of 1 minute,
- 10 ps over a timescale of 10 minutes
- As stable as possible over long timescales

M&C Networks characterised

SPDO

Monitor, control and comms

Redundancy

Bi-directional

Expansion

Addressable

Industry standard protocols and interfaces

Challenges for the SKA

SPDC

- Large & complex instrument
- Significant system challenges in
 - Power Consumption
 - Cost
 - EMC

Desirable design targets to meet the SKA challenges SPDO

Thermal control solutions for semiconductor laser diodes with low power dissipation.

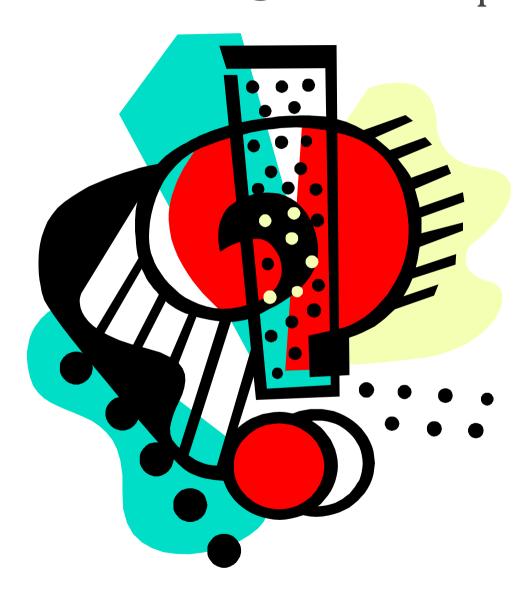
Higher bit rate capacities

- for constant or reduced power dissipation
- For lower costs

Increased use of optical technologies in signal processing to reduce the transitions between optical and electrical domains.

Possible components of interest

- Low Power TECs for lasers
- High bit rate, long wavelength VCSELs
- Optical backplanes
- Integrated 'receiver on a chip' devices with RF (10 GHz) or IF (2 GHz) inputs and optical, digital outputs.



Conclusions

- SKA will make extensive use of photonic networks and devices.
- The design requirements are challenging, but exciting.
- They can be achieved using existing techniques.
- New and innovative techniques may allow more efficient use of resources.

Questions to mccool@skatelescope.org spdo

