

meerKAT RFE Sub-System Manager venkat@ska.ac.za 0027 215317282; 0027 797744725

Briefly, about me

Ooty Radio Telescope, India 1974-1985

http://ncra.tifr.res.in/ncra_hpage/ort/ort.html

- 530 m x 30 m parabolic cylinder
- On a hill with the slope same as the latitude;
- 1024 dipole linear array at 327 MHz
 Redonet

Giant Meterwave Radio Telescope, India 1985-2008

http://www.gmrt.ncra.tifr.res.in/

- •30 nos of 45m dia prime-focus dishes;
- Spread in an area with dia of 30 km;
- Operates in 150-1500 MHz band;
- 0.3 to 20 km analog optical fibre network for

signal transport

• 80 km digital data link between Pune and GMRT with one repeater

Briefly, about me

One Square Meter Array (OSMA), ASTRON 1997-1999

- Experimental Demonstrator towards an Electronically Steerable Radio Telescope
- 2 to 4 GHz RF; Beamforming with adaptive RFI cancellation

KAT-7, SKA-SA, South Africa 2008-

- South African precursor to SKA
- 7 prime focus antennas 12 m dia
- 200 m. baseline; 1.2-2 GHz RF
- Cryogenically cooled (77K) Front End
- 6 km analog optical network

Abstract and Plan for the Talk

This presentation discusses the factors that go into the design of an analogue optical fibre network for a radio astronomy receiver. Such a network has been implemented for the KAT-7 phase of the SKA SA project, in order to transport the signal from seven antennas to a central node. The measured performance of the chosen optical transmitters and receivers is summarised, and on-going work for the signal transport of the 80-antenna MeerKAT array is presented.

PLAN: GMRT PHOTONICS KAT-7 PHOTONICS meerKAT PHOTONICS

GMRT Photonics

Forward link transmits a pair of LO Reference Signals at 105 and 200 MHz as well as Telemetry FSK signal around 18 MHz

EVENTH FRAM

GMRT Photonics

The SKA-SA AGA Act Area

SEVENTH FRAMEWO

AGA Act: Astronomy Geography Advantage Act

FRVINTH FRAMEWO

The Stages of KAT-7 Receiver

BUDGET UPDATE FORMAT FOR GAIN

Nominal Input power -95 dBm; Output power -27 dBm implies 68 dB typical RFE gain

	STAGE 1	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7	RFE
seed	38 dB	10 dB	-10 dB	10 dB	10 dB	10 dB	68 dB
PDR figures	38 dB	22 ±1dB (Tellumat)	PDR Decisions needed	5 ±1 dB (at 5 dB attr setting: Tellumat)	RFP outcome awaited	10 dB (at 0 dB attr setting: ETSE)	
Apr 28 update	<37.6±?> Tests planned in Cryo at EMSS*	22±1 dB	-6 dB for FS400**	-5 ±1 dB at 5 dB nominal attenuator setting	<10±3> CDR May 1 st week	10 dB at 5 dB nominal attenuator setting	68.6 dB (FS400)
Final Figures	37.6± 1 dB	22± 1 dB	-6 dB for FS400**	-5 ±1 dB at 5 dB nominal attenuator setting	Variable Gain*** to give -37 dBm output	10 dB at 5 dB nominal attenuator setting	68 dB

•Room temperature measurements are satisfactory and match data sheet. Statistical data comparing performance at 77K of 8 amplifiers for KAT-7 in final testing at MITEQ Factory is expected shortly. Assumes pre-LNA losses from the CDR report of EMSS

** 27 meters cable length assumed. Nominal Figures at mid-band given. Loss Slope across RF band is ±0.75 dB for FS400

*** By adjusting potentiometer in Optical Receiver LRU

Cascaded RFE Study for Receiver Temperature and Head-room

Notes: Parmeters in RED are input parameters Parameters in BLACK are derived. Ver A Mar 15, 2k9 Ver B Apr 13, 2k9 Ver C Apr 28, 2k9 Ver D Jul 22, 2k9	\geq			-				-		•						-						
	-		physic	qmet la	17	-					1			1		i i		1				
BASIC SPECS AT EACH BLOCK:	OMT OUT		Barrel		Dir Cptr		Cable		LNA		Stage	e 3	Stage 4		Stage 5		Stage 6		Stage 7		DBE	
1 dB compression point at input (dBm)		1000		1000		1000		-38		-8	- ALLON	1000		-4		-10		0				S
1 dB compression point at output (dBm)		1000		1000		1000		1000		0		Competence of		1000						10		
IP3 at input (dBm)		1000		1000		1000				2		1000		0		0		10				
IP3 at output (dBm)	1	1000		1000		1000		1000				-		1000	1 5							
Noise Figure at input (dB)		0.026		0.052		0.033		0.15				6		15		16	2	19	-		2	
Gain for RF Signal (dB)			-0.1		-0.2		-0.125		38		22		+6		-5		11.37		10			
Cumulative Gain at a Point:																						
Comulative RF Signal Gain (dB)		0		-0.1		.0.3		-0.425		37.575		59.575		53.575		48.575		59.945				
POWER AT EACH BLOCK OUTPUT (in dBm):																						
Nominal power in a 1.2-1.95 GHz biv (T = Row 50)		-96.945		.97.045		-97.245		-97.370		-59.370		-37.370		-43.370		-48.370		-37.000		-		

NOISE TEMPERATURE T (in K):																						
At a point in the receiver chain		1.763		3.507		2,201		10.191		2013.552		864.511		8880.605		11255,108		22745.519				
Individual Block Contribution at input		1.763		3.589		2.359		11.239		0.352	1	0.001		0.039		0.156		0.023				
	-				-														-		and so in the	
Total Noise at Input (K)		19.521									1											

Head room to 1 dB compression at INPUT of each block		1096.945		1097.045		1097.245		59.370		51.370		1037.370	2	29.370		38.370		37.000		-		
											-				******							
	-					· · ·					-	-	1	-			-	-		1.1.1		
														1.00	STAGE	5		5	TAGE 7			
								_				STAGE	4	OT	IER DET	AILS:		OTHE	R DETA	ILS:		
			LOSS	INIMISATI	ON EFFOR	RTS IN PR	OGRESS				Claw	OTHER DET	AILS: 0.DB from	Nami	nal Atte	nuation dB		Nomina	el Attenu	ation		
								1			Time	scance P 300	re used for	Gain	adjustat	le from		Gain ad	liustable	from		
				67		a					a	ibove calcu	lations	0 to 63 i	dB in 0.5	i dB steps		0 to 15 d	B in 1 d	B steps		
																		(F	adio		3	

STAGE 1 STAGE 4 STAGE 5 STAGE 7 **STAGE 3 STAGE 6** RFE <=15K (goal <=0.3 dB <= 10dB <=12 dB seed 10K) Could be PDR RFP PDR 12 dB 31 dB 8 dB lowered at Decisions outcome (Tellumat) (Tellumat) (ETSE) figures considerable needed awaited expense! Apr 28 Tests 9 dB 6 dB for 15 dB <12 dB> 23 dB ~20K** CDR May 1st update planned in FS400 week Cryo chamber at EMSS* 15 dB 16 dB*** 0.3 dB 9 dB 6 dB 19 dB <=20K Final figures (goal 17K)

BUDGET UPDATE FORMAT FOR NOISE FIGURE

* Room temperature measurements are satisfactory and match data sheet. Statistical data comparing performance at 77K of 8 amplifiers for KAT-7 in final testing at MITEQ Factory is expected shortly.

** Pre-LNA Loss Minimisation efforts are in progress.: Not very successful.

*** For a setting of -10 dBm as 1 dB compression point in the Optical Transmitter LRU

STAGE 5 STAGE 6 STAGE 1 **STAGE 3 STAGE 4 STAGE 7** RFE 26 dB 26 dB 26 dB 26 dB 16 dB 26 dB 26 dB seed (goal 34 dB) PDR Goal will be Spec will be Passive; Spec will be RFP 26 dB figures met (Input Goal will be met (Input (goal 34 dB) met outcome IP3 of +2 IP3 of +6 awaited met dBm dBm expected) expected) Apr 28 **STATUS** 59.4 dB 51.4 dB No issues <37 dB> 37 dB 38.4 dB **REMAINS! CDR May** update 1st week Final 59.4 dB 51.4 dB No 38.4 dB 38 dB 37 dB Goal figures issues met

BUDGET UPDATE FORMAT FOR HEADROOM TO 1 dB COMPRESSION

From EVLA memo 110, a 1% Gain Compression point is derived, which is 14 dB below the 1 dB compression point. The Goal for the RFE has been set as 20 dB headroom to 1% compression point

	BUDGEI	UPDAIL	FURIVIAI	FUR GAIN	FLAINES	3 (230 IVIE	12)
	STAGE 1	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7	RFE
seed	0.4 dB p-p (goal 0.2 dB)	0.4 dB p-p (goal 0.2 dB)	0.4 dB p-p (goal 0.2 dB)	0.4 dB p-p (goal 0.2 dB)	0.4 dB p-p (goal 0.2 dB)	0.4 dB p-p (goal 0.2 dB)	2 dB p-p (goa 1 dB)
PDR figures	To be measured	1 dB p-p	PDR Decisions needed	1 dB p-p	RFP outcome awaited	2 dB p-p (goal 1 dB)	
Apr 28 update	Tests in Cryo chamber at EMSS scheduled	<= 1 dB pp	0.61 dB for FS400; 0.45 dB for FS600; 0.8 dB for RG214	<=1 dB pp	<0.4 dB p-p> CDR May 1 st week	0.8 dB, excluding mixer simulation	
Final figures	<=1 dB pp	<= 1 dB pp	0.6 dB pp	<=1 dB pp	0.4 dB pp	1.2 dB pp (goal 1 dB)	6 dB pp (Goal 5 dB) *

BUDGET UPDATE FORMAT FOR GAIN FLATNESS (256 MHz)

* Might need to add an Equaliser ?

	STAGE 1	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7	RFE
seed	0.25% RMS over 10 minutes	0.25% RMS over 10 minutes	0.25% RMS over 10 minutes	0.25% RMS over 10 minutes	0.25% RMS over 10 minutes	0.25% RMS over 10 minutes	1.5% RMS over 10 minutes
PDR figures	Data not available; May be expensive to get	± 0.025 dB over 10 minutes	PDR Decisions needed	± 0.025 dB over 10 minutes	RFP outcome awaited	<tbd> with goal of 0.01 dB over 10 minutes</tbd>	
Apr 28 update	Tests in Cryo chamber at EMSS scheduled	± 0.025 dB in 10 minutes*	0.01 dB for a ΔT of 5 deg C**	± 0.015 dB In 10 minutes *	CDR May 1 st week	0.27% in 10 minutes for cold plate temp of 25±1° C	
Jul 22 figures							

BUDGET UPDATE FORMAT FOR GAIN STABILITY

* Discussions with Mario on March 15, 2k9

** Assumes a third of the Flexstrand 400 cable length of 27 m. is exposed directly to sunlight and is subjected to a 5deg C temp change in 10 minutes. Based on measurements done at facilities in Tellumat. Special enclosure needs to be designed and built for getting similar numbers on FS600. For the first order, same performance may be assumed.

Recent controlled verifications of stability of a typical Stage 3 Unit shows that the target is met and CAN be improved further if desired by a re-design of the enclosure.

The KAT-7 Optical Transmitter and Receiver

Plots with 1m. Fibre. Similar ripple and p-p performance with a 10 km fibre spool

For \pm 3 dB gain setting around a nominal gain of 17 dB (7 dB RF loss due to 6 km cable assumed, to give a typical installation link gain of 10 dB) and a FIXED 1 dB compression setting of -10 dBm

• Tx Draws 200 mA from 8V and 100 mA from -5.5V rails

Power Supply Coefficient on gain: $\pm 0.05 \text{ dB}/12 \pm 1 \text{V}$

 $\pm 0.03 \text{ dB}/ -5.5 \pm 0.3 \text{V}$

Power Supply Coefficient on group delay: not measurable

Rx draws 250 mA from 12V nominal

▶ Power Supply Coefficient on gain: \pm 0.01 dB/ 12 \pm 1 V

Power Supply Coefficient on group delay: not measurable

• Gain stability with temperature: $\pm 0.004 \text{ dB}/\text{deg C}$, over 0-40 deg C

• Group delay stability with temperature: Not measurable

The OTx and ORx: Measured Performance

- Input return loss: Better than 18 dB
- Output return loss: Better than19 dB
- Noise Figure: 16 dB
- SNR: 30 dB in 1 GHz bandwidth
- OIP3: +16 dBm
- •IMD products at -19 dBm inputs: -97 dB
- RFI Compliance tested to MIL-STD 461E RE102 at the facilities of ISSA, Houwteq, South Africa
- •No damage after 2 minutes of an in-band input at +15 dBm

NOW FOR THE NEXT CHALLENGE!

The meerKAT Receiver: ESSENTIALS

The meerKAT Receiver: ESSENTIALS

PRIMARY SCIENCE DRIVERS:

RF Band coverage	: (a) 0.59 to 2.4 GHz (b) 8 to 15 GHz
Sensitivity (Ae/ Tsys)	: 220 m ² / K with T _{sys} of 27K in L-band
Dynamic Range	: 300 000 to 1 with FOV of 1 deg ² in L-band
OPTIONS TO MEE	T THE DRIVERS:
Choice of Dish	: (a) CENTRE FED PRIME FOCUS
(1mm surface; 15" pointing accura	acy): (b) OFFSET GREGORIAN
No. of antennas	: (a) 64 OR (b) 80 in Central Cluster
(60 kmph stow; 15 to 95 deg eleva	ation): 7 antennas in a spur 80 km long (PHASE 2)
Digitisation location	: (a) Central Node (b) Focus of antenna
Diameter	: (a) 12 m. (b) 13.5 m (c) 14.7 m.
Feed Element	: (a) 2 to 1 (b) 4 to 1 (c) broader bandwidth

: (a) 2 to 1 (b) 4 to 1 (c) broader bandwidth

The meerKAT Receiver: ESSENTIALS

- Swappable Octave band Single pixel Cryo Receivers at focus with indexing mechanism to choose 2 or 4 feeds
- LNAs and Noise sources in 77K environment
- All RF functionalities (filter/ level control/ total power detector) inside the "EM IN-RF OUT" package
- The Analog or *ADC+Digital Optical Transmitter* located at focus to take outputs from ALL cryo receivers via ~1m coax
- Phased Approach to reach the Goal:
- (a) 900-1750 MHz (b) 590-1100 MHz (c) 8 to 15 GHz for
- (a) 10 km (b) 50 km (c) 50 km baselines by (a) 2014, (b) 2016
 - (c) 2017 respectively

The meerKAT Optonics: Requirements

26

The meerKAT Optonics: Issues

The meerKAT Optonics: Riser Cable

•The research on a suitable Riser Fibre Cable for use from Pedestal to Focus at each antenna is under advanced stage of development together with CBi Electric, South Africa

•It uses Aramid polyurethane sheath for 6 SM fibre of 652 or 657 type in a loose tube construction of 2.2 mm dia

•The cable has successfully undergone torsion, drip, tensile strength, flexure, tube kink, cable kink, repeated bending, mandrel bending, impact, crush test (plates), temperature cycling and UV accelerated tests to the relevant TELKOM or IEC 794 specifications.

•CBi suggests that we use 657 cable for BOTH Riser as well as buried cable needs as

•Corning has recently made the price of both cables same and •657 is likely to be the Industry Standard for SM applications in a few years.

The meerKAT Optonics: Riser Cable

- •The phase-temperature-coefficient of a sample cable using 652 and 657 fibre has been measured (PRELIMINARY) as around 6 ppm per deg C.
- e-VLA has quoted a figure for a Corning fibre of 2 ppm/ deg C in memos #32 and #44.
- Need to understand what is the best figure possible to take a decision on round trip phase investment
 Further in-house RF tests to estimate behaviour with mechanical and environmental factors are planned at the facilities of Tellumat.
- •The cable is planned to be laid between the focus and pedestal of the last three KAT-7 antennas for rigorous field evaluation 30

The meerKAT Optonics: Buried Cable

•The concept studies on the Buried Optical Fibre Cable to link Pedestal of each antenna with Site Facility is at an advanced stage of visualisation, together with Aurecon and SIA Solutions, South Africa

•The exercise takes advantage of the need for other infrastructure requirements of meerKAT like power distribution and roads in a costeffective manner

The meerKAT Optonics: Buried Cable

The meerKAT Optonics: Connectors

•The investigation of suitable ruggedised connectors for use at focus of each antenna is in progress, together with Tellumat, South Africa

•FC-APC or E-2000 APC connectors essential for analog RF. Threaded connectors with Guide mechanism to ensure proper AND REPEATABLE alignment of the angle-polished end surfaces while maintaining the air-gap is essential from RELIABLE performance point of view.

•Would PC connectors be adequate for the digitised astronomical signals?

•Would FIBRE+POWER connectors (and cables) be an advantage?

The meerKAT Optonics: Connectors

•Need to ensure performance ruggedness for conditions like RFI leakage, resonances in antenna and other vibration, temperature excursions, wind, rain, dust, sun's UV and heat, pecking by birds, bird-nests......

•Following have been identified as prospective connectors: >Huber-Suhner's ODC range of IP-67 grade APC connectors >M38999 series MIL grade connectors from different vendors like Aldo-Souriau, Huber-Suhner, ITT etc >ELIO Hermatic Bulkhead Feed-Thro Connectors in case needed for use within cryo

•Rigorous tests are planned at the Test facilities of Tellumat for inhouse qualification and verification of performance (not for birds!)

The meerKAT Optonics: Terminal Devices

• Preliminary investigation of suitable 15 GHz Optical Transmitter and Receiver for an analog link has been completed and is currently in the back-burner. Adequate ground work has been done with Photonics, Miteq and Foxcom.

• In-house (in-country?) development of the terminal Tx-Rx hardware is under consideration, preferably as a collaborative effort for mutual benefit with leading Organisations, especially for meeting the needs of single tone round-trip-phase and clock distribution functionalities

• Discussions with e-VLA group on round-trip phase and clock distribution concepts for adapting to meerKAT is in preliminary stages

• Thermal solutions involving Stabilisation Above Maximum Ambient is under investigation

CONCLUSIONS

How to conclude on something which is just starting with NEW GOALPOSTS?

THANX FOR YOUR PATIENT LISTENING! -

