
Contract nr. 227290

Erlang for UniBoard:
functional monitoring and control

verkouter@jive.nlHarro Verkouter ADASS XXI - Paris

Er·lang /ˈɜːlæŋ/
Is a functional programming language and runtime
system specifically built for distributed monitoring-and-
control of large soft-realtime (hardware)systems.

Erlang IRL Factsheet
In active development since 1988 by Ericsson of Sweden
Open-sourced in 1998
Battle tested on Ericsson’s carrier grade ATM switch AXD301
Facebook Chat is powered (amongst others) by Erlang
Runs on Linux, *BSD, OSX and Windows in 32 and/or 64 bit

Erlang Goodies
Dealing with binary data is built in to the language
Pattern matching on binary patterns
Extremely lightweight concurrency (106 processes easily)
Distributes transparently across machines and systems
Hot code-swapping makes for uninterrupted services
Assume hard- and software will fail
Infrastructure and utilities to monitor and handle are built in to the system

Functional Language: eliminate classes of bugs
functions can be used like variables
Being side-effect free eliminates ~20% of bugs
No global state (“variables”) yields safety and lock-free multiprocessing
Variables aren’t. Single assignment only eliminates ~60% of bugs
Pattern match in stead of direct function-call
Conditional matching based on properties of the function call arguments

UniBoard
A multi-purpose, FPGA based, scalable, high-
performance computing platform for radio-
astronomical applications such as correlators or
beamformers. The board is developed by an
international consortium of radio-astronomical
institutes.

UniBoard specifications
8 Altera Stratix IV FPGA (=0.4TOPS total)
2 x 16 x 10Gbps I/O
64GB RAM
240Gbps inter-FPGA IO
separate 1Gbps control network

Monitoring and control
Its eight FPGAs will be individually controlled using
a binary protocol over UDP/IPv4. Some applications
use ≫ one UniBoard. The APERTIF beam former
and correlator will require over a hundred,
necessitating control of > 800 FPGAs. This is
exactly what Erlang was designed and built for.

Control: message handling
Pattern match on an what is received. receive is
a keyword in the Erlang language. The function
below handles messages and (tail)recurses to
handle the next message.

handle_message() ->
receive

% Did we receive the string literal “hello”?
“hello” ->

io:format(“ world!~n”),
handle_message();

% Did we receive a number? Then compute+print its reciprocal
N when is_number(N) ->

io:format(“1/~p = ~p~n”, [N, 1/N]),
handle_message();

% Maybe it was XDR opaque data:
% 32bit unsigned <Length> in network byte order (big
% endian) followed by exactly <Length> unsigned 8-bit bytes.
% The pattern is written such that it will only match if
% the message is exactly received like this.
<< Length:32/unsigned-big, Data:Length/unsigned-unit:8 >> ->

io:format(“Received ~p bytes of data ~w~n”,
 [Length, Data]),
handle_message()

end.

Control: fun with processes
“spawn” spawns a new Erlang process and returns
an Erlang process-id. “!” is the ‘send’ operator:
process-id ! <term> sends the Erlang term
<term> to the indicated process.

% Start the handle_message function from the previous block in
% a separate process
% “fun() -> ... end” is Erlang syntax for an anonymous function/lambda
1> ProcessID = spawn(fun () -> handle_message() end).

% Send the literal string “hello” - we know how this should be handled
2> ProcessID ! “hello”.
world!

% Make it compute + print the reciprocal of 3
3> ProcessID ! 3.
1/3 = 0.3333333333333333

% Trigger a fatal error in the message handler.
% All processes monitoring the handler process will be informed
% (currently only the Erlang interactive shell)
4> ProcessID ! 0.
=ERROR REPORT==== 1-Nov-2011::17:26:01 ===
Error in process <0.96.0> with exit value: {badarith,[{erlang,'/',
[1.000000e+00,0]},{erl_eval,do_apply,5},{erl_eval,expr,5},
{erl_eval,expr,5},{erl_eval,expr_list,6},{erl_eval,expr,5},
{erl_eval,exprs,5}]}

supervisor

worker

crash!

A B A monitors B

B A A gets EXIT from B

Normal Panic!!

Monitoring: supervision trees
The key to Erlang’s fault tolerance. Processes can
monitor each other and get notified if a ‘linked’
process crashes. Processes are idiomatically
divided into supervisors and workers. Workers
perform tasks and if they crash their supervisor
takes appropriate action or pass the error on up
the supervision tree.

http://www.erlang.org

UniBoard at the Joint Institute for VLBI in Europe (JIVE)
JIVE will implement the European VLBI Network’s (EVN) next generation correlator using UniBoard. Illustrated is how the correlator is implemented and controlled. The
trail reads from the hardware on the left via progressive abstractions/zooms to software control on the right.

1Gbps ETH

Nios2 CPU +
16kB RAM

Polyphase
Filter bank

D
elay

1. A UniBoard, 8 FPGAs 2. A single FPGA with some VHDL on it

FPGA

1Gbps ETH

Polyphase Filter bank

registers

Delay Module

registers

Nios2 CPU

registers

registers

3. Schematic overview of 2.

0x7fff0000
31 16 1

0x7fff0004

0x7fff0018

PPS_ENABLE (1 bit)

NUM_COEFFICIENTS (5 bits)

DELAY_0 (1 32bit word)

5. Register layout of the Delay Module

-module(delay_module).

registers() ->
[fpga:bit(pps_enable,1, 16#7fff0000),
 fpga:bitrange(num_coefficients, 5, 19, 16#7fff0004),
 fpga:word(delay_0, 16#7fff000c)].

set_delay(FPGA, Delay) ->
OldPPS = fpga:read(pps_enable),
fpga:execute(FPGA, [fpga:write(pps_enable, 0),

 fpga:write(num_coefficients, 1),
 fpga:write(delay_0, Delay),
 fpga:write(pps_enable, OldPPS)]).

File: delay_module.erl

6. High-level Erlang code to drive the Delay Module

0x00000000

0x00800000

4. Memorymap of the Nios2 CPU

0x7fff0000

