Direction dependent calibration

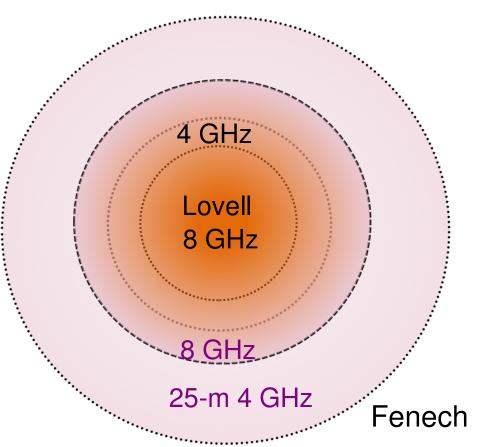
University of Manchester Garrington/Richards

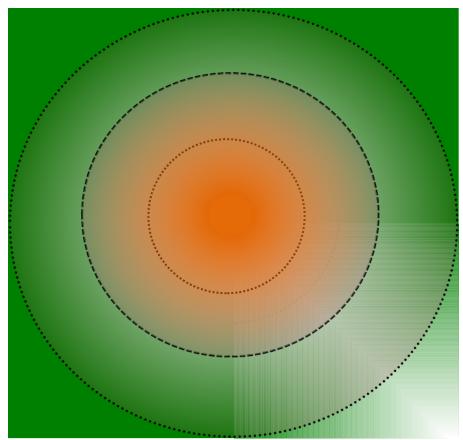
2.2.1

12 + 15

- Ionosphere, (Troposphere)
- Antenna/Station beams

Use cases


- cm-wave imaging of full primary beam
 - objects of interest
 - confusion
- Mosaicing and array combination
- Science requirement to what accuracy level?
 - imaging fidelity
 - flux scale accuracy, astrometry, polarisation
- Not our problems (directly)?
 - all-sky survey instruments
 - mm/sub-mm wave and single dissues
 - rapidly-moving solar-system objects?


Objectives

- Calibration strategies for practical implementation
 - remove atmospheric and instrumental corruption variations on arcmin/sub-degree scales
 - by corrections for direction- and antennadependent, time-varying complex gains
- Decompose instrument- and target-dependent considerations into a range of approaches
 - standard observatory pipelines, customised scripts, interactive/user calibration/imaging
- Allow for flexible/modular implementation
 - combine with VLBI methods
 - support different imaging strategies
 - interoperability between packages where needed

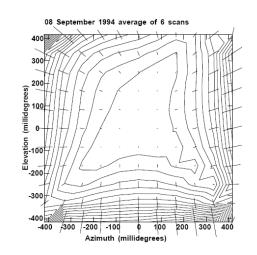
Heterogenous beams

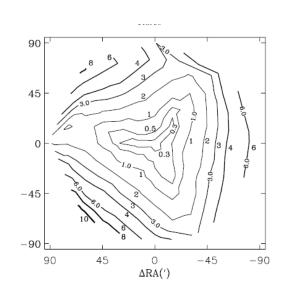
- From 25 to 75 m
 - and then add a phase screen...

Visibility-plane approaches

- Direction dependent matrix solution in uv plane
 - using predicted beams (Bhatnagar)
 - · 'aw' projection
 - first order or higher gradients?
 - efficient ME parameterization
- Differential gains at source positions (Smirnov)
 - concerns over no. of degrees of freedom
- Direct correction using measured beams
 - Reid et al for DRAO ST polarisation

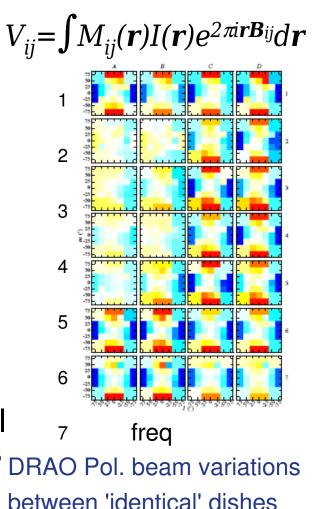
Ionosphere cont.


- For ionosphere
 - fitting Zernicke polynomials (Cotton)
 - ionospheric parametrisation (MIM, Noordam)
 - work from large to small-scale structure
 - external information eg GPS (Anderson)
 - geographical limitations to applicability


Image plane

- Peeling (Osterloo, Cotton,...)
 - works for general direction-dependent effects
 - pragmatic
 - isolating sources
 - identify scales of isoplanatic regions for self-cal

Wide-field polarimetry


- Leakage & gains vary across PB
 - Rotates on sky for alt-az
 - Pointing errors, elevation, thermal effects
 - Scales with frequency
- Image plane approaches (for points):
 - Cotton(1994): VLA
 - measure apparent (Q,U)/I using coarse beam raster (~4% at 3dB)
 - scale by I, subtract rotated pattern
 - average over all antennas, same parallactic angle (snapshots)
- Peracaula, Taylor et al (2003) DRAO
 - similar approach; non-rotating beam
- Both work to <1% over full field

Empirical or analytic

- Integrate & FT Jones matrices
 - Directional antenna voltage patterns, v dependence
 - Reid et al (2009) DRAO: Measure
 - correct Stokes Q,U using linear combinations of d-terms, model / cc
 - Bhatnagar et al (2008) VLA: Predict
 - full direction dependent matrix
 - incorporate FT of Mueller matrix for baseline *ij* ,calculate residual image
 - tested for I & V incl. beam squint
 - Smirnov (2008) solve for differential gains (leakages) at source positions

Plans

- Review approaches
- Assess suitability for different arrays, v's etc.
- Science goals: flexible images/other products
 - ensure consistent calibration across fields
 - optimise weighting for specific targets
- Consider stages of user interaction
- Review tools required and platforms available
- Select test data sets
- Initial implementations
 - Parseltongue/AIPS, CASA
- Further developments

Issues

- Variety of techniques in variety of environments
- Differing use/applicability of external cal info
- Ranges over which specific solutions applicable
 - don't record everything at the highest granularity
 - gradients/vectorise where possible
 - different requirements for cal models/science?
- Requirements for sky models/catalogues
 - bright sources, flux standards backgrounds
 - w-projection v. faceting for field-based calibration
- Storing image information for iterative calibration
 - v and PB-dependent information

More issues

- Instrumental polarization variations across field
 - heterogenous arrays
 - v-dependence
- Pointing and elevation-dependent effects
 - deformation, opacity
- Transient sources
- Performance, data bulk, parallelization
- Accuracy estimates/stopping criteria
- Differing degrees of user interaction
 - Implementation platform(s)
 - Pipelines
 - Interoperability

Starting from here

- Contributed effort Garrington, Richards, Muxlow, Beswick
 - assess/test what's already available
 - obtain test data
 - with Eyres' summer student, prepare source catalogue using MERLIN phase-ref archive
- New hire
 - implementation
 - acceptance tests
- All: reports

Milestones

- Month 10 reports
 - relevant instruments/science requirements
 - available algorithms and strategies
- Month 16 experimental implementations
- Month 21
 - final test results
 - final report