

APERTIF Focal Plane Arrays for the Westerbork Synthsis Radio Telescope enabling widefield radio astronomy

Laurens Bakker

Outline

- introduction APERTIF
- Description of the first prototype
- Results of the recent second prototype prototype
- Ongoing developments
- Conclusion on future work

APERTIF (APERture Tile In Focus) NWO ASTRON

- APERTIF aims to increase the field of view of the WSRT with a factor 25
 - survey speed increase with factor ~ 20 .
- Enables new astronomical science, especially large surveys
- Operational in 2012
- Only feasible with dense Phased Array Feed (PAF) technology for small f/D telescope
- Frequency range
- Instantaneous bandwidth
- System temperature
 - Couple of thousand LNAs required (uncooled)
- Aperture efficiency
- Polarization
- Beamforming
- Number of simultaneous beams
- Field of view
- Dish
 - diameter
 - f/D
 - equatorial mount

1000 - 1750	
300 MHz	and a
< 55 K	AL DE
75%	
Dual linear	
All digital	
37 dual pol	
8 deg ²	1
-	
25 m	
0.35	4.A

Specific APERTIF surveys

- HI survey of the Sloan Digital Sky Survey (SDSS) area
 - Shallow and deep (relatively large collecting area)
- Overlap with LOFAR surveys
 - All-sky continuum and polarisation survey
- Efficient pulsar survey
 - Regular array \rightarrow 8-grate mode

Technical challenges

- To achieve the stability of the whole system
- Achieving uncooled Tsys of <55K
- RFI environment at Westerbork
- Realizing all the digital processing required (~100TMAC for all dishes, all beams, including correlator. BF~75%)
- How to put the beams on the sky
 - Achievable FoV with uniform sensitivity (especially for higher frequencies) determined by available processing, not phased array feed
- Large number of receiver channels
 - Cost per channel should be low
 - Manufacturing must be outsourced

Beam stability

- Horn system:
 - Beam pattern is only determined by mechanics.
 The stability of the beam pattern is already limiting the dynamic range of some WSRT experiments.
 - Electronic gain variations are only a second order effect and can be corrected relatively easy.
- Focal Plane Array:
 - Multiple elements, with their own receiver channels, are combined to form compound beams
 - The compound beam patterns are depending on electronic gain variations of the receiver channels
 - Beam stability is a serious concern, calibration is critical!

Technical Approach

- First built an End-to-End system to test system level issues
 - Noise performance of secondary importance
 - Bandwidth of secondary importance
- Understand the system
- Upgrade the system stepwise to reach the performance required for APERTIF
- Focus APERTIF is on the analog parts (i.e. up to and including A/D) and system. Processing platform in JIVE led Radionet FP7 project Uniboard

Top level block diagram

First APERTIF prototype (DIGESTIF)

FPA for the WSRT One dish fully dedicated to FPA $8 \times 7 \times 2$ elements Vivaldi array Dual polarisation Size: 80*80cm 60 Receiving chains Frequency range 1.0 - 1.7 GHz 30 MHz bandwidth Element separation: 10 cm $(\lambda/2 @ 1.5$ GHz) Data recording backend

First generation LNA

- Design for 50ohm input impedance
- >40 dB gain (flat)
- HPF with 25dB attenuation at 800MHz
- 3 stages, with high pass filtering after first stage and second stage
- Reasonable S11
- OIP2 first stage ~45dBm
- Sma input connector (50ohm)
- F-connector output (75 ohm)
- 120 devices installed in first prototype (externally manufactured)
- LNA based on ATF-54143 ->low Rn

LNA measurement results

Noise measurements

•In 50 ohm using 5.2dB noise source and NFA

Cables going across jumpers

NWO AST(RON

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

Down Conversion Unit

- Input band 1-1.7GHz
- Bandpass filter 2.5GHz center, 80 MHz BW, 60dB down for $|f_c-f| > 100MHz$, one steep slope required
- Convert to 40-80 MHz band
- 16 dB gain from input to output (1.4GHz input)
- LO1 3.5-4.1 GHz, input level >-13dBm
- LO2 fixed at 2.56 GHz, input level >-13dBm
- 10dBm mixers
- Cable equalizer included
- Additional shielding used
- Single supply voltage
- Power consumption 5W
 - 12V operation

Bonn, November 2009

- LOFAR ITS hardware
- Sampling at 80 MHz
- Sampling in second nyquist zone
- 40-80MHz bandpass filter
 - >60dB down at 38 and 82MHz

DIGESTIF backend

Born, November 2009

First Light (September 2007): NWO AST(RON

Detection of galactic hydrogen

Element patterns on the sky

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

Combining beams

- Weighting coefficients
 - Weighting schemes described by Ivashina, Hay, Warnick
 - Cas A has been used as point source
- Procedure:
 - 1. Measure ACM on empty spot:
 - 2. Measure ACM on point source:
 - 3. Extract dominant eigenvector of
- Conjugate field matching:

R_n R_{ps} R_{ps} - R_n : w_{cfm}

- $\mathbf{W} = \mathbf{W}_{cfm}$
- For maximum SNR: $\mathbf{w} = \mathbf{R}_n^{-1} \mathbf{w}_{cfm}$

Beamformer weights

- Beamformer weights are determined on a strong point source (e.g. Cas A)
 - Effects of antenna array and mutual coupling, blockage are included in the weights
- Airy ring structure is recognized in the weighting coefficients
- Amplitude of max SNR weights for on-axis beam @ 1421 MHz

Compound beam patterns

Element Patterns ugly, but compound beams are very well behaved

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

Measured compound beams

- 56 elements per **beam**
- Single polarisation
- Beams overlap at -0.7 dB points
- Max SNR weights
- Source: Cas A
- Sensitivity almost flat up to ±0.8 deg
- 25-30% sensitivity loss at edge of FoV

•Measured sensitivity prototype (central beam): •Corresponding T_{sys} =123 K (with A_e=70%) $A_e/T_{sys} = 2.8$

System temperature first prototype

- LNA noise temperature vs. Tsys
- first installed APERTIF LNA(first stage) is ~55K
- First installed APERTIF three stage LNA ~70K
- first measured Tsys ~123K
- So Tsys about 65 K higher than LNA
 - 15K second consecutive stages LNA
 - Feed loss and loss connectors ~15K ('expensive' RF material used)
 - Active impedance / Rn effects about 15K
 - Sky noise 3K
 - spillover about 15K

Sensitivity

- Source: Cassiopeia A
- 1420 MHz
- Every pixel is from a compound beam in the desired direction

- Sensitivity over frequency on-axis beam
- RFI bands and expected intermods marked grey
- Smooth variations mostly due to LNA T_{min} variation, filters, cable losse

Single dish imaging

• Single dish, single pointing image!!

2nd RadioNet-FP7 Engineering Forum Workshop

Measured compound beam

1420 MHz, Source: Cygnus A, on axis cross-pol: 1% (-20 dB)

Measured compound beam

1420 MHz, Source: Cygnus A, on axis cross-pol: 1% (-20 dB)

Synthesis imaging

- PAF synthesis image
- Only the PAF MFFE baselines are used (3)
- 1420 MHz, 20 MHz bandwidth
- Field: 3C343

Synthesis imaging

- Compound beam synthesis image
- Only the 3 PAF MFFE baselines are used
- 1420 MHz, 20 MHz bandwidth
- Field: 3C343

Second prototype array

•144 elements
•Element separation: 11 cm
•Feed integrated with LNA
•Size array 97*97cm

Measured T_{LNA} < 37 K 1.0 – 1.8 GHz 35 K 1.4 GHz

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

Second generation LNA

- Feed integrated with LNA
- Design for 50ohm input impedance
- >42 dB gain (flat)
- HPF with 25dB attenuation at 800MHz
- 3 stages, with high pass filtering after first stage
- Reasonable S11
- OIP2 first stage ~45dBm
- F-connector output (75 ohm)
- 160 LNAs were manufactured externally (available Aug. 2009)
- LNA based on ATF-54143

LNA measurement results

Noise measurements

 In 50 ohm using 5.2dB noise source and NFA
 Liquid nitrogen gives a up to 5K better results
 But also some points up to 10K worse
 New LNA measured with connector soldered at input 2nd RadioNet-FP7 Engineering Forum Workshop

Noise budget (prediction)

APERTIF prototype		Sept `09	Final APERTIF 2012
Spill-over	15 K	10 K	10 K
Vivaldi feed losses+conn.	15 K	6 K	7 K
Receiver noise (single)	75 K	40 K	28 К
Active Impedance/Rn effects	15 K	9 К	7 K
Sky	3 K	3 К	3 K
Total	123 K	68 K	55 K

Recent Measurement results

- Upgraded antenna array in WSRT dish (Oktober 2009)
 - Measured T_{sys}/η = 91 K, $T_{sys} \sim 68$ K
 - Excellent agreement between simulated and measured sensitivity
 - On planned path to T_{sys} =55 K goal
- Front-end redesigned for low noise
 - Noise due to antenna losses: 4 K
 - LNA integrated on antenna
 - Using commercial ATF-54143 transistor

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

NWO AST(RON **Interferometric measurement on 3C147 Design target** T_{sys} [K] Prediction 60└─ 1410 frequency [MHz]

• Assuming antenna efficiency of 75%

No sign of 17 MHz ripple yet... NWO AST(RON

Measured sensitivity over field of view (phi

On-going work

- Detailed design of APERTIF hardware
 - Downconverter with 300MHz instantaneous bandwidth
 - Sampling board sampling at 800MHz, 8-bit
 - Digital processing platform development (Uniboard, radionet)
 - Design new PAF prototype
- Continuing experimental verification with DIGESTIF
- System calibration (esp. temporal stability), beamforming algorithms (e.g. minimizing sensitivity ripple over FoV, polarization purity, stability)
- Optimization of front-end (antenna + LNA) for minimum noise.
- Transistor testing with Tuner setup

2nd RadioNet-FP7 Engineering Forum Workshop

Bonn, November 2009

Noise parameter measurements NWO AST(RON

- •Maury tuner
- •Measured in shielded (EMC) room
- •Agilent 5.2dB noise source
- •PNA-X
- •Commercial Maury software
 - •Both hot/cold and cold method possible
 - •Different algorithms to determine noise parameters
- •Very repeatable results

2nd RadioNet-FP7 Engineering Forum Workshop

Conclusions and future work

- Excellent agreement between modeling and measurement of Tsys
- Tsys ~68K achieved
- APERTIF passed PDR in August 2009
 - System level issues most important, not subsystem (i.e. calibration)
- LOFAR backend will be coming month(s)
 - 32MHz instantaneous bandwidth
 - Real time beamforming (also several beams)
 - Check temporal stability
 - Check calibration algorithms
- Detailed design of hardware

