

Mark5, SUs, MarkIV correlator

- Mark5, general
 - Decision on SDK9 was made (finally!)
 - All (-1) Mark5s at JIVE upgraded
 - USNO ready to do the same
 - But, newest Linux kernel + newest SDK break e-VLBI
 - For now, stick to old Linux, install newest SDK
 - Talk by Harro Verkouter
- Mark5B/C
 - 2 units permanently converted to B
 - 1 extra unit currently B+, 6 C units in place
 - 1 C unit on loan to Yebes
 - 1 C unit on loan to Torun for DBBC verification
- SU
 - Functioning
 - We think....
- MkIV Correlator
 - Only used for verification of gravity

Jive5AB

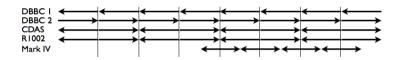
- Preparing for the roll-out of Jive5ab
 - Requested (repeatedly) by TOG: one code for recording and real-time
 - FieldSystem compatible
 - Extensively tested in the field
 - Incorporates full Mark5 command set
 - Robust, multithreaded, smart memory management
 - Many new features; "Swiss army knife of (e)VLBI"
 - Channel dropping, on-the-fly corner turning, sending different chunks of data to different destinations, full VDIF support
 - Will enable semi-automated fringe tests
 - Request stations to switch to Jive5AB for next EVN session
- Talk by Harro Verkouter

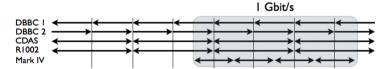
e-status

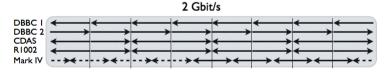
- Full 1024 Mbps used operationally, from most stations
 - e with DBBC working fine from Ef, together with Mh the only operationally used DBBCs
- Channel dropping available when needed (except Ar)
- Sh upgraded from 256 Mbps to 512 Mbps
 - Limitation within China
 - New connectivity via Orient+ (10 Gbps Beijing London)
- Ar at 512 Mbps
- Irbene: first e-VLBI fringes at 512 Mbps!
- Attempts to bring e-Merlin back into array on-going

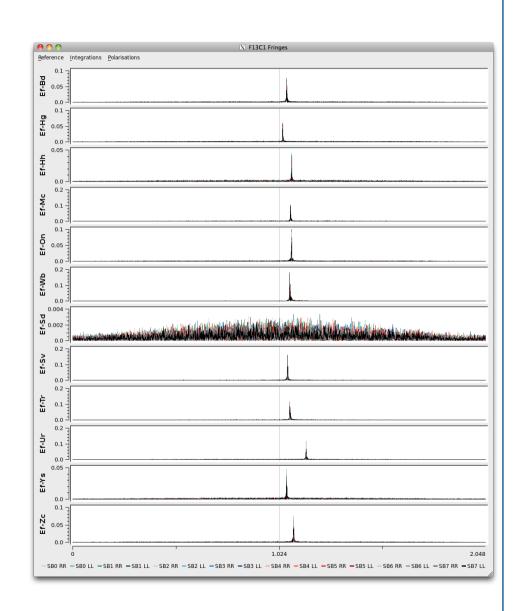
SFXC Correlator

- Enhancements to software correlator
 - More capacity, more hardware
 - 128 cores added
 - 13 stations at 1024 Mbps in real time
 - 14 should be possible with some tweaking
 - Now also used for e-sessions
 - After fixing some minor glitches


- Mixed sub-bands (32 16 MHz)
- Upper and lower side band flipping
- Phased array mode under development
- Primary beam correction under investigation


SFXC Correlator


- Testing various backends
 - In mixed bandwidth setup
 - Global observations after legacy mode in VLBA will be discontinued
 - Mixed 2Gbps-1Gbps within EVN



Combined VEX file:

Edited VEX file (with fake 2 Gbit/s, 16 MHz station):

UniBoard and beyond

- UniBoard-based EVN correlator
 - Correlator design review held early 2013
 - No show stoppers, process on right track
 - Fine tuning of filter bank
 - Testing and debugging of:
 - Control system
 - Delay model generation and application
 - Post correlation data handling
 - Real data in, real fringes out
- UniBoard²
 - Aims for more CPU, less power consumption
 - Project straddles two technologies, 20 and 28 nm
 - Still waiting for definitive word on availability of FPGA technology
 - 20 nm will fit in timeline of project
 - potential path to upgrade to 14 nm (collaboration Altera Intel)
 - Kick-off meeting before summer 2013

Towards 4 Gbps

- First test last year June
- More or less successful
- Demo planned during final NEXPReS review, September 2013
 - In order to impress review panel
- Most problems are solved
 - HarroBox performance
 - Faulty Mark5C recorder
- But one remains
 - Most likely related to Fila10G firmware
 - Unfortunately, hardware failure of new Fila10G boards...
 - And the only working Fila10G in Bonn has been taken to Chile. Again!!

Telescopes

With thanks for the kind cooperation of

NEXPReS status

- Semi-automated fringe tests
 - Without interruption to science schedule
 - As often as wanted/needed
 - Will select suitable calibrator automatically, store data on local disk, transfer at whatever speed is available, run pypeline when all data has arrived
- FlexBuff (aka AriBox) shaping up well
- Extensive stress test:
 - Send 2Gbps pre-recorded data streams from FlexBuffs at 4 stations to JIVE
 - Simultaneously, record on each local FlexBuff at highest rate possible
 - Record incoming 4*2Gbps data streams on FlexBuff at JIVE
 - Read data into correlator while recording is ongoing
 - Model for future operations?

NEXPReS status

- High bandwidth on demand
 - Tr joined
 - Several successful demo's
 - Migration of SURFNET6 to 7 broke lightpaths to UK
 - e-sessions saved by BoD-procured 10G connection
- Computing in a shared infrastructure
 - Several demos coming up:
 - Automated triggered observation with sub-set of EVN
 - Distributed correlation: JIVE, Poznan, Curtin
 - Using both SFXC and DIFX correlators