

JIVE - Joint Institute for VLBI ERIC -

- Promote and advance the use of VLBI for astronomy
 - Central correlation for European VLBI Network
 - Operational feedback to stations
 - User support
 - Preparation of observations
 - Data reduction
 - Improvement of VLBI technique in general
- Base budget from partners in 8 countries:
 - China, France, Germany, Italy, Spain, Sweden, United Kingdom, the Netherlands, South Africa
 - hosted by ASTRON

How the EVN stations view feedback from JIVE

R&D and Technical Operations Group

Projects

No R&D budget

• R&D financed through EC and NWO projects

2006	EXPReS	SA1
		SA2
		JRA1
2008	NWO-SCARIe	
2009	NWO-ExBox	
	RadioNet FP7	UniBoard
		ALBIUS
2010	NWO-ShAO collaboration	
	NEXPReS	SA1
		SA2
		JRA1
		JRA2
2012	RadioNet3	UniBoard^2
		Hilado
2014	BlackHoleCam	WP1.1
		WP1.3
	NWO SKA-NL roadmap	SaDT: SAT architect
		SKA-VLBI
2015	H2020 ASTERICS	Cleopatra
		Obelix
	NWO KAT7-VLBI	

Not counting Space Science projects!

What do we do?

• Correlators

- More capacity, new telescopes, development of AVN
- New features, new science

• Data recording/playback/transport

- Real time/near-real time
- Higher bandwidths

• Automated operations

- Get rid of disk shipping
- Monitoring, automated fringe checking
- Triggered observations

• SKA and mm VLBI

- User software, VLBI with CASA
- Simulations for BHC
- Fringe checking

• Time and frequency transfer

- For SKA
- And on public networks

Out with the old...

- MkIV Correlator
 - Dead and gone!
 - Correlator boards sent to Hawaii

In with the new

• SFXC software correlator at JIVE:

- 40 nodes; 384 cores (Intel Xeon 5500/5600/E5-2600)
- QDR Infiniband interconnect (32 Mbit/s)
- 8 nodes with 10 GbE (currently limited to 20 Gbit/s total)
- 13 stations @1Gbit/s real-time (with cross-polarisations)

- All recorded VLBI on SFXC since summer 2012
- First real-time e-VLBI in december 2012
- SFXC capabilities: talk by Aard Keimpema

The birth of SFXC

- Tracking of Huygens probe during descent to Titan
- Ad hoc use of the Huygens uplink carrier signal at 2040 MHz
- 17 radio telescopes around the world
- Salvage of Doppler experiment
 - Special purpose, narrow band software correlator

3D Huygens descent trajectory

Beset

Terminal (3)

Shc-gui,py (4)

Start Reload from database Save profile Show status Show Log Quit

Operator:

Run py (2)

Abort

RadioAstron fringes on SFXC at JIVE

Space Science: tracking of VEX

JUC (JIVE UniBoard Correlator)

- UniBoard: EC-funded, led by JIVE
 - JRA in RadioNet FP7 (also in RadioNet3)
 - Create generic, high performance computing platform for radio astronomy
 - ASTRON in charge of hardware development, various partners developing different personalities of board

UniBoard Correlator

- One board roughly equivalent to MarkIV hardware correlator
 - At 250 Watt power consumption...
- Commissioning ongoing

IVE

16 stations at 4 Gbps?

- \sim 13 stations on current SFXC cluster at 1 Gbps
- 16 stations at 4 Gbps: factor of ~5 more hardware needed
- 16 stations on 2 available UniBoards at 2 Gbps
- 4 Gbps: factor 2

platform	power consumption (kW)	investment (keuro)
SFXC	30	550
UniBoard	1	30

- Somewhat incomplete comparison
 - Software: fantastically flexible, easy to modify, HW getting cheaper as we go along
 - Firmware: very power efficient, once it goes, it goes, but not nearly as flexible, ideal for "simple" things

- Original control code not adequate for needs of EVN
 - Full re-write of Mark5 control code
 - Used for all EVN operations, gaining traction in geo community as well
 - Incorporates full Mark5 command set, supports Mark5, Mark6, FlexBuff...
 - Many features; "Swiss army knife of (e)VLBI"
 - Channel dropping, on-the-fly corner turning, sending different chunks of data to different destinations, full VDIF support
 - Made e-VLBI possible at all
 - Enabled semi-automated fringe tests
 - M5Copy: transport any data from anything to anything
 - Choice between TCP, UDP, UDT
 - Essential for automated shipping
 - Future developments in ASTERICS
 - Talks by Rob Eldering and Harro Verkouter

Time and frequency transport: White Rabbit

- SKA:
 - Measure timing performance with WR-ZEN board
 - Test with 10km fibre in climate chamber
 - Test on 24.4 km dark fibre Dwingeloo – WSRT
 - Test on e-Merlin fibre, eventually on Meerkat/ASKAP sites
- CLEOPATRA:
 - Verify/demonstrate achieved 10^-13 stability (1s) and 1ns timing performance
 - by showing fringes between WSRT and Dwingeloo dish
 - Transfer of H-Maser signal from the WSRT to Dwingeloo

Frequency transfer demo in CLEOPATRA

JIVE involvement

- Software pipeline [JIVE]
 - CASA-based fringe-fitter for VLBI
- Array simulation [JIVE, Radboud, Rhodes]
- Robust turn-key VLBI operation [MPIfR, JIVE]

Courtesy: Monika Moscibrodzka, Roger Deane

