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SFXC
● MPI application written in C++
● Runs on generic linux based computing clusters
● Used for all correlation at JIVE
● Has a rich set of features, including:

– Mixed bandwidth correlation
– Tsys extraction
– Pulsar binning / gating
– Coherent dedispersion
– Multiple simultaneous phase centers
– Phased array mode 



Obtaining SFXC

• Nightly mirror of development repo:
https://svn.astron.nl/sfxc

• Installation instructions
http://www.jive.nl/jivewiki/doku.php?id=sfxc

• Tools for conversion to MeasurementSet and FITS-IDI:
http://www.jive.nl/~kettenis/sfxc/tools

• SFXC is Open Source software available under GPL 
version 2 or later

Keimpema, Kettenis, Pogrebenko, et al., Experimental 
Astronomy,  39, 259 (2015).

https://svn.astron.nl/sfxc


• 41 nodes (+ 2 FlexBuff and 23 Mark5 units)

• 396 cores (E5520, E6520, E5-2670, E5-2630 v2)

• QDR Infiniband + 8 nodes with 10 GbE

• 14 stations @1024 Mbit/s real-time



Tsys Measurments in SFXC

• 80 Hz switched power signal is injected into data 
stream

• Ratio between between on-off power is computed from 
samples statistics

• Very small overhead; all samples used

• See VLBA Sensitivity Upgrade Memo 34 (Brisken)
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Radio Astron

● Correlated using delay 
model by Duev et al.,  A&A 
573, 99 (2015)

Fringe amplitude (top, 
arbitrary units, 

uncalibrated) and 
phases (bottom, 

degrees) at
 5 GHz, baseline Ra-Ef,  

integration 1s per 
point. 



  

Multiple simultaneous phase 
centers

● Internally correlate at high temporal / spectral resolution
● Output a narrow field data set for each source in the beam
● On average 30-50% slowdown but each additional phase 

center comes at very little additional cost
● Requires an addition primary beam correction

Station beam

Phase center



  

Multiple simultaneous phase 
centers

Going from 2 to 100 sources requires only 
30% more correlation time!



  

Pulsar gating

● Increase SNR by only accumulating when the pulsar is on
● Improvement in SNR typically factor 3-5
● Requires TEMPO polyco model of the pulsar
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Pulsar binning

● Divide the pulse into multiple bins and accumulate the 
correlation function for each bin seperately.

● Each bin is output to a separate file 

bin1 bin2 bin3 bin4



  

Dispersion

Dispersive delay : Δ t ≈ 4.15×106
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−2
−ν 2

−2
)[ms]



  Dispersive delay : Δ t ≈ 4.15×106
×DM×(ν 1

−2
−ν 2

−2
)[ms]

Dispersion



  

Incoherent de-dispersion



  

Limits to incoherent dedispersion

● Maximum dispersion measure for which dispersive 
delay and FFT length are within half a pulse width.

● Pulse width is 5% of pulse period



  

Coherent de-dispersion

Frame 1
Frame 2Inputs

Overlap-add
+

Frame 3

● Dispersive delay can be exactly removed by applying 
a filter H(υ) with transfer function

● Filter is applied in overlap – add structure

H (ν 0+ν )=exp( −i2π DM ν
2

2.41×10−10
ν 0

2
(ν 0+ν ) )



  

Coherent filterbank

Ch 1

Ch 2

Ch N

Coherent 
dedispersion

Coherent 
dedispersion
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After applying the de-dispersion filter there is still an
offset between channels that needs to be compensated

Signal



  

Phased Array Mode

● Phased array mode : coherently sum station signals
● SNR is proportional to total collecting area in the array 
● Time domain pulsar science

– Pulsar searching
– Pulsar timing
– Scintilation studies

Station 1

Station 2

Station N
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Calibration
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Calibration
● Before signals can be coherently summed, phase and 

amplitude calibration solutions have to be provided

● Two pass process, data is first correlated like a regular VLBI 
experiment and the usual data reduction steps are 
performed in AIPS.

● Calibration (CL) and bandpass (BP) tables from AIPS are 
exported back to the correlator.

● Bad frequency channels are masked in BP table
● Calibration tables are then applied within SFXC.

SFXC
(correlation)

AIPS
(calibration)

SFXC
(phased Array)



  

M15A (Kirsten, Vlemmings, et al.)



  

Stations = Jb,Gb



  

Stations = Jb,Gb,On,Tr,Wb(1)



  

Stations = Ef,Jb,Gb,On,Tr,Wb(1)



  

Stations = Ar,Ef,Jb,Gb,On,Tr,Wb(1)



  

SNR vs Total Effective Area

GbJb GbJbOnTrWb
EfGbJbOnTrWb

ArEfGbJbOnTrWb



  

Beam maps

Half power

● Series of deliberate mispointings around a point source
 

Effelsberg @21 cm, target 3C286



  

Model fitting beam shapes
● Least square fit beam model to beam map
● Written in python
● Supported data formats: FITS,  ASCII table
● Example ASCII data:

● Supported beam models : Airy, Gaussian, Polynomial

RA offset DEC offset LCP RCP

-0.196584 -0.154995 0.118596 0.147875

-0.171007 -0.155042 0.246834 0.120844

-0.142839 -0.154967 0.039953 0.127841

-0.114712 -0.154985 0.119025 0.097853



  

Airy Disk Beam Model
First order model : Uniformly 
illuminated circular aperture 
(Airy Disk)

D = Dish diameter, 
λ = wavelength
J1(z) = Bessel function of 
the first kind

I (θ )=|2 J 1(z )z |
2

, z=
π D
λ
sin (θ )

1.22 λ/D

FWHM = 1.028 λ/D



  

Effelsberg illumination pattern @11.7 Ghz

The Effelsberg Holography Campaign - 2001

M.Kesteven, D.Graham, E.Fürst, O.Lochner & J.Neidhöfer
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Gaussian model

I (θ)=A0 e
− θ2

2σ 2

● The Airy disk model can very closely be approximated by a 
Gaussian model

● The optimum fit is σ = 0.42λ/D, for apperture of width D



  

Effelsberg @21CM, RCP

I ( x , y)=e
−

(x−x0)
2
+( y− y0)

2

2( zλ)
2

Model :

RCP LCP

X0 -6.88441” -3.68020”

Y0 -3.42791” -2.98701

Z 1151.51 1151.6

FWHM 572.9” 574.9”

Deff 75.2 M 75.0 M
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Effelsberg @6CM, RCP

I ( x , y)=e
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2
+( y− y0)
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2( zλ)
2

Model :

RCP LCP

X0 7.985279” -1.191061”

Y0 -0.154405” 0.081825”

Z 1009.2 1017.3

FWHM 147.0” 148.2”
Deff 85.8 M 85.1 M
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● Beam squint should be taken into account for C band
● Pointing errors?



  

● Less crucial for L band



  

Yebes @6CM, RCP

I ( x , y)=e
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(x−x0)
2
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Model :

RCP LCP

X0 2.807198” -0.363737”

Y0 0.695973” -4.880469”

Z 2052.1 2060.1

FWHM 289.9” 290.5”
Deff 42.2 M 42.1 M
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Only W75N



  

Only W30H



  



  

Primary beam correction

● Corrections are applied using a parseltongue script.
● Primary beam does not vary significantly over pencil 

beams. 
● Correction factor is constant for each scan

Station beam

Phase center



  

N11L4 (18 cm)
● Test experiment to probe primary beam shapes
● A series of deliberate mis-pointings around 3C66A

Before : 



  

N11L4 (18 cm)
● Test experiment to probe primary beam shapes
● A series of deliberate mis-pointings around 3C66A

After : 



  

Questions?
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