BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

"digital" VLBI-receiver: ~1.5 - 15.5 GHz for the EVN and other telescopes Prototype for prime focus + research for secondary focus

EVN Observing Bands < 22GHz

Today in the EVN separate receivers cover:

- 18 cm L band
- 13 cm S band
 - 6 cm C band
 - 5 cm C (Methanol-OH)

4 cm – X band

In each EVN session \sim 3 freqs. observed in succession

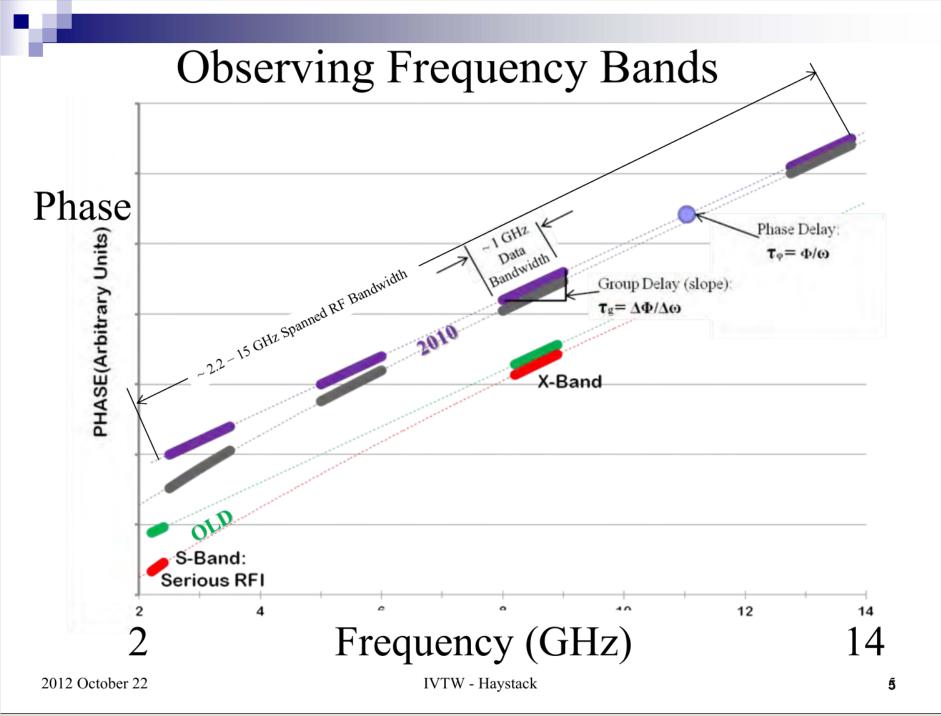
No multi-band simultaneous observations

New Opportunities

can develop multi-wavelength VLBI now!

- Broad-band LNAs and feeds (e.g. VGOS, **PINA**)
- backends with very high data rates see JRA VINA: DBBC3 with 2x 4GHz dual pol - 32Gbps soon up to 128 Gbps
- High bit-rate recorders: Mark 6 (64 Gbps w. 4 units @EHT)

Scientific motivation fast frequency switching


- VLBA offers fast frequency switching (~7 s) between 2 or 3 frequencies
 - high user demand
 - saves valuable observing time
 - spectral index maps
 - if phase-referencing is used: precise registration of source positions

precise measurement of core-shift

• is wanted for the EVN for more than 15 y!

Scientific motivation multiwavelength VLBI

- simultaneous multi-frequency observations
 a la VGOS
 - with fringe-fitting over very wide frequency range (cf. VGOS)
 - will determine ionosphere

Scientific motivation multiwavelength VLBI

- simultaneous multi-frequency observations
 a la VGOS
 - with fringe-fitting over very wide frequency range (cf. VGOS)
 - will determine ionosphere (JRA RINGS)
 - precise registration of simultaneous images at different frequencies
- But superior to VGOS due to continuous freq. coverage (RFI filters !!)

Scientific motivation compatibility with VGOS antennas

- joint observations with geodetic VGOS antennas would be possible
- precise positions of astronomical antennas
- celestial reference frame
- huge arrays for astronomical observations if needed

PROPOSAL

Single cooled receiver covering the broadband for astronomy with linear polarization feed

Starting from e.g. the ten years VGOS developed technology (feeds, backends, recorders)

New: Analogue signal processing <u>without</u> any frequency conversion and huge sky frequency range + extremely high bit-rate

PROPOSAL

- Survey of individual EVN antennas!
 - Feed options (prime/secondary), RFI, interfaces
 - will select prime focus as demonstrator
 - research on options for secondary focus solutions
 - aim is to install the BRAND receiver in the whole EVN
- QRFH feed from Onsala (e.g. JRA **PINA**)
- DYQSA feed from Yebes
- ELEVEN feed from Onsala

PROPOSAL (analogue)

Cryogenic HTS (High Temperature Superconductor) filters for strong RFI

Wide-band LNA (e.g. Yebes)

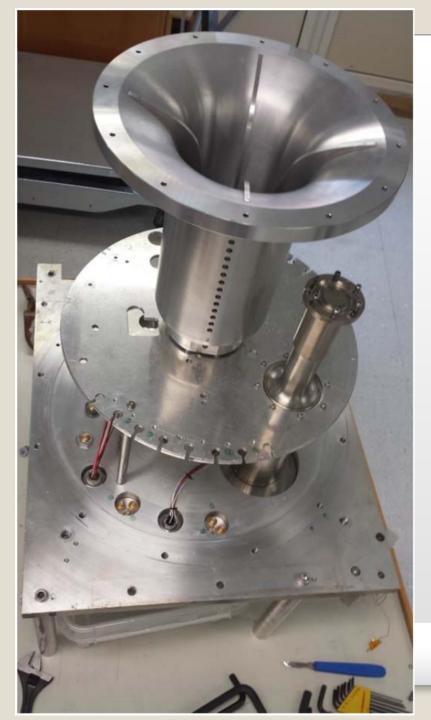
Analogue signal processing: <u>only</u> LNA and amplification chain

PROPOSAL (digital, firmware)

- Fully digital broad-band sampling and data processing
 - next version of DBBC3 with: sampling 0 GHz 15.5 GHz
 - output data-rate up to 128 Gbps
- Broad-band digital receiver together with frontend
 - but also universal back-end for VGOS, other receivers
- Fully digital down-conversion and/or band selection: DSC/PFB/DDC
 - Output channel selection means also <u>selection of the observing</u> <u>band</u>

=> MULTI-BAND SIMULTANEOUS OBSERVATIONS !

PROPOSAL (firmware)


Digital polarization conversion from linear to circular

Additional digital RFI mitigation

- Local RFI 'fingerprint' determination at stations
- Multi-band total power detector

Multi-band polarimeter

- (and spectrometer...)

Quad-ridge feed horn as tested by Onsala

Feed horn ready to be placed into dewar

Advantages for EVN

User:

- new improved science
- "more" observing time

Telescopes

- •fewer receivers to maintain (2 with SEVN)
- "more" observing time

EVN could take lead in VLBI observing with novel capabilities

Aims / Work packages

- Survey: determine boundary conditions for EVN telescopes (Interfaces, focus, RFI ...)
- Develop feed for prime focus
- Investigate feed solutions for secondary focus
- Develop prototype receiver for selected antenna including dewar etc. (prime focus)
- Develop digital sampler, adapt processing unit
- Adapt existing/write new firmware and control software
- Integration and test

PARTNERS

- MPI
- INAF
- 0S0
- YEBES
- ASTRON
- VIRAC (no cost)