The Russian backends. Developments

Dmitriy Marshalov, Evgeny Nosov

Institute of Applied Astronomy, RAS St. Petersburg, Russia

The "Quasar" VLBI Network

EVN TOG 2016, Spain, February 9, 2016

"RT-32" specifications:

- Configuration: Cassegrain with asymmetrical subreflector
- Main reflector diameter: 32 m
- Subreflector diameter: 4 m
- Focal length: 11.4 m
- Azimuth range: $\pm 270^{\circ}$

R1002M Backend system (2/3)

R1002 Key features	
Input frequency range	$100 \div 1000 \mathrm{MHz}$
Number of IF-inputs	16
Number of channels (BBCs)	$0.5,2,4,8,16,32 \mathrm{MHz}$
Selectable bandwidths	Both lower and upper
Separated sidebands	$-40 \div-45 \mathrm{~dB}$
Image rejection rate (typ.)	Electronically
Commutation of input and output signals	$\leq 0.7^{\circ}$ (measured in
Local oscillators phase noise (rms)	$30 \mathrm{~Hz} \div 30 \mathrm{MHz}$ range)
	$\leq 0.3 \mathrm{~dB}$
Ripple of amplitude-frequency response of the BBCs	$\leq \mathrm{VSI-H}$
Output data format	Up to 2 Gbps
Output data rate	RS-232, RS-485,
Available control interfaces	$100 / 10$ Ethernet
Total dimension (three 19 " subracks)	$445 \times 950 \times 315 \mathrm{~mm}$

R1002M Backend system (3/3)

Hardware Delay

Cutoff frequency of the BBC on the lower end is $5 \mathrm{kHz@} @ \mathrm{~dB}$
To achieve this a sophisticated bank of complex filters (with real and imaginary part) was designed
The filters introduce significant delay to the signal which should be taken into account during correlation processing

| Bandwidth, MHz | 0.5 | 2 | 4 | 8 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: | 32

The antenna system of radio telescope RT-13

"RT-13" specifications:

- Manufacturer: Vertex Antennentechnik GmbH
- Mount: alt-azimuth
- Main reflector diameter: 13.2 m
- Surface accuracy: < 0.15 mm
- Azimuth speed: 12%

BRoadband Acquisition System (BRAS) structure

Digital conversion channel (Channel)

- Analog IF signal (1024-1536 MHz) conversion to digital
- IF signal power measuring
- 2-bit information flow conversion
- Output data is packed in VDIF frames
- The output VDIF data stream are transferred to recording system by 10GE interface
- Interaction with Control PC to configure and transmit telemetry data

Synchronization unit

- Formation and distribution of the clock signal of 1024 MHz (for ADC) и 256 MHz (for FPGA)
- 1PPS formation and distribution
- Measuring delay between 1PPS and 1 Hz (H-Maser) and 1PPS and 1 Hz (GNSS)
- Formation and distribution of the control signals from channels to synchronization unit

BRoadband Acquisition System Design

EVN TOG 2016, Spain, February 9, 2016

BRAS location

BRAS is located in the focal cabin. The output signals are digital and transmitted through fiber.

Advantages over analog signal transmitting through fiber or coaxial cable:
$>$ No influence on frequency response
$>$ No EMI induced in IF
$>$ Variation of ambient temperature and cable loop bending does not affect the transmitted signal
$>$ Reduced amount of equipment (amplifiers, equalizers, RF-to-fiber converters etc.)

EVN TOG 2016, Spain, February 9, 2016

Number of channels	8
IF	$1024-1536 \mathrm{MHz}$
Channel bandwidth	512 MHz
ADC	8 bits, Fs=1024 MHz
Output samples width	$2 / 8$ bits
Automatic gain control	For each channel, 31 dB
Sync signals	$5 / 10 / 100 \mathrm{MHz}$ (autodetect),
	1 PPS x2
Control interface	$10 / 100$ Ethernet
Telemetry	Power circuits current, temperature of
	PCBs and ADCs
Power consumption	75 W
Size	$19 "$ case, $483 \times 314 \times 242 \mathrm{~mm}(\mathrm{WxHxD})$

Key features of BRAS (2/2)

Connecting and operating modes

Receiving system frequency ranges:

- S-band - $2,2-2,6 \mathrm{GHz}$
- X-band - $7,0-9,5 \mathrm{GHz}$
- Ka-band - $28-34 \mathrm{GHz}$

Two main mode:

- one S-band \& 3 X-bands RCP (1-4 ch.) and LCP (5-8 ch.)
- one X-band \& 3 Ka-bands RCP (1-4 ch.) and LCP (5-8 ch.)

EVN TOG 2016, Spain, February 9, 2016

Delay difference between X-band channels (1/2)

EVN TOG 2016, Spain, February 9, 2016

Delay difference between X-band channels (2/2)

EVN TOG 2016, Spain, February 9, 2016

Results for \triangle UT1 IAA-IERS

EVN TOG 2016, Spain, February 9, 2016

Current developments

Multipurpose Digital Backend (MDBE)

more information: http://www.oan.es/raege/evga2015/PDF/T2/T2-3-
EVGA2015.Nosov.pdf
EVN TOG 2016, Spain, February 9, 2016

Thank you!

13th EVN Symposium \& Users Meeting

13th EVN Symposium \& Users Meeting will be held in September 20-23

- Information available on http://www.ipa.nw.ru/EVN2016
- The TOG meeting is scheduled on September 19

INTRODUCTION

The Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS), on behalf of the European VLBI Consortium, will host the 13th European VLBI Network Symposium and Users Meeting on September 20-23, 2016. The Symposium will be held at the St. Petersburg Scientific Center, located in the heart of St. Petersburg.

Technical development from VLBI, space VLBI and e-VLBI and the latest scientific results from a number of radio facilities around the globe, such as e-MERLIN, LOFAR, EVLA, ALMA, MeerKAT, ASKAP, SKA will be reported. Scientific sessions will include life cycle of matter in stars and galaxies, AGN and cosmic starformation, Extreme Astrophysics, Astrometry and Geodesy, planetary and space science, as well as techniques and developments. The programme will also include an EVN Users Meeting to foster interaction between the EVN users and the EVN organization.

The Scientific Organizing Committee invites all scientists who have interests in the various research fields of VLBI and in related fields to participate in the Symposium, submit contributions to the topical sessions and share their research with colleagues and friends. We are looking forward to welcome you in St. Petersburg!

