
1ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

RadioNET FP7:
Modular design and module reuse: 

the ETH module as an example

UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010
Eric Kooistra



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 2

Contents

1. Why modular design and module reuse?

2. The ETH module as an example

3. Module simulation test bench

4. Altera SOPC Builder system using the ETH module

5. Software functions module

6. Design simulation test bench

7. Verification on hardware

8. Documentation

9. Conclusion on modular design and module reuse



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 3

Why modular design and module reuse?

The aim is to have plug and play modules to speed up FPGA 
firmware development and make it easier.

This is necessary to be able to use the latest FPGA technology
for our designs (note Stratix V is already there).

Casual reuse (meaning copy paste from existing code) also
speeds up development, but less than module reuse.



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 4

Module reuse does not come for free

The initial development time increases, because it involves:
- keeping general usage in mind while designing
- thorough testing in simulation and on target
- providing a reference design
- complete set of source files (HDL, C, project, scripts, …)
- proper coding style (even though the user may not see this)
- proper documentation



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 5

What is a VHDL module?

The definition is not strict, but typically a design consists of 
modules and a module consists of components.

1. Design: top level entity that can run on the FPGA

2. Module: a more elaborate function or a group of related low 
level functions

3. Component: a low level function

The designs are kept in $UNB/designs
The modules are kept in $UNB/modules

(UNB = https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/)



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 6

Available modules in $UNB/modules/

COMMON e.g. counter, memory, FIFO

UNB_COMMON UniBoard auxiliary

LOFAR/I2C I2C master

LOFAR/MDIO MDIO master

LOFAR/DIAG test sequence generator

DP(1) packetizing data and de-packetizing data

DP(2) streaming components, e.g. mux, latency adapter

TR_NONBONDED giga bit transceivers

ETH 1GbE



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 7

Top level of the ETH module

The ETH module is kept at $UNB/modules/tse

Purpose is to:
- Minimize the processing load for the microprocessor
- Provide a Memory-Mapped (MM) interface to the TSE MAC IP
- Provide a Streaming (ST) interface to off-load UDP frames



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 8

Standard MM and ST interfaces

Master Slave

control

data

Source Sink

control

data

Master Slave
mosi

miso
sla_out
sla_inmas_out

mas_in

Source Sink
sosi

siso
snk_out
snk_insrc_out

src_in

MM = Memory-Mapped ST = Streaming



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 9

MM and ST interface record examples

MM interface:

ST interface:
TYPE t_eth_udp_stream IS RECORD

-- Source In or Sink Out (SISO)
  ready    : STD_LOGIC;

-- Source Out or Sink In (SOSI)
  data     : STD_LOGIC_VECTOR(c_eth_data_w-1 DOWNTO 0);
  valid    : STD_LOGIC;
  sop      : STD_LOGIC;
  eop      : STD_LOGIC;
  empty    : STD_LOGIC_VECTOR(c_eth_empty_w-1 DOWNTO 0);
  channel  : STD_LOGIC_VECTOR(c_eth_demux_channel_w-1 DOWNTO 0);
END RECORD;

TYPE t_eth_reg_mm_bus IS RECORD
-- Master In Slave Out (MISO)

  rddata    : STD_LOGIC_VECTOR(c_eth_data_w-1 DOWNTO 0);
-- Master Out Slave In (MOSI)

  address   : STD_LOGIC_VECTOR(c_eth_reg_addr_w-1 DOWNTO 0);
  wrdata    : STD_LOGIC_VECTOR(c_eth_data_w-1 DOWNTO 0);
  wr        : STD_LOGIC;
  rd        : STD_LOGIC;
END RECORD;



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 10

VHDL wrapper to encapsulate IP

Purpose of a VHDL wrapper is to have a central file via which
the IP is instantiated in our designs.

Advantages of using a wrapper are:
- Ensures that all instances use the vendor IP in the same way
- Clearly isolates vendor IP from our own generic VHDL
- Eases porting to other vendor IP should this be necessary
- The wrapper may also contain some extra (glue) logic
- Corrections in the wrapper automatically effect all instances



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 11

Module VHDL test bench

Test bench to simulate the ETH module DUT in Modelsim

TSE IP

regreg buf

DUT

ETH p_lcu_transmitter

p_lcu_receiver

TSE IP

reg

UDP off-load
loopback

eth_rxp = lcu_txp AFTER cable_delay
eth_txp = lcu_rxp AFTER cable_delay

p_lcu_setupp_tse_setup

p_eth_control
MMMMMM MM

ST

ST

ST



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 12

Altera SOPC system using the ETH module

ETH module Nios2 microprocessor



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 13

Avalon VHDL wrapper for ETH module

The ETH module can be made available in SOPC Builder via a 
hardware description TCL file. This hw_tcl file can be created
using the SOPC Component Editor (see $UNB/doc/howto)

The purpose of the Avalon VHDL wrapper is:
- To map the ETH entity ports to the Avalon interface convention
- To allow that the ETH entity definitions can be kept vendor
tool independent



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 14

Design instantiating the SOPC system

Design unb_tse can run on all 8 UniBoard nodes (hence name unb_*)

unb_node_ctrl

unb_system_info

sopc_tse

clk_0

rst_0n

sys_clk

sys_locked

sys_rst

pout_wdiWDI

pin_system_infoID
VERSION pout_debug_wave

eth_led

TESTIO[led green]
TESTIO[led red]

.link

[31]



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 15

Software functions module

The SW functions module for the ETH module consists of:
- avs_eth.h public functions to control the ETH module
- avs_eth.c private implementation
- avs_eth_regs.h interface registers defines

The module software is kept in $UNB/software/modules/src

The module software functions can be used in a main()

The SW main() functions are kept in $UNB/software/apps

The /eth_main_tx_rx/main.c sends and receives frames using
interrupts and a tasks loop



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 16

Design VHDL test bench

Test bench with one or more devices under test (unb_tse)

Ring provides simple, but adequate model of an Ethernet switch,
provided that the nodes transmit to their next neighbour



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 17

Design verification

In simulation On hardware



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 18

Simulation wave window

Use PIO debug wave to track SW progress in Modelsim wave window



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 19

Module Description Document

ETH module document contents:

1. Introduction Purpose, overview

2. Interface MM registers and SW module functions (all a
SW engineer needs to know), ST ports, …

3. Design Top level architecture, clock domains

4. Implementation Lower level architectures

5. Application SOPC design, synthesis

6. Verification VHDL test benches, target HW

7. Appendices



UniBoard Face-to-face Meeting, Bordeaux, 12-13 October 2010 20

Conclusion

Modular design and module reuse is not new but still applicable
- The amount of effort to make a module reusable depends
on its complexity

- If a module has an MM interface then it also needs a SW
functions module

- In any case keep general usage in mind while designing

Modules can be made available in Altera SOPC Builder to allow
creating firmware systems via the GUI.

DSP functions can also be put or grouped into modules. The MM 
interface and ST interface also suit DSP functions.

If DSP modules are made available in Altera SOPC Builder then
a complete DSP design can be created via the GUI.


