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ABSTRACT

Context. Since its formulation by Hamaker et al., the radio interferometer measurement equation (RIME) has provided a rigorous
mathematical basis for the development of novel calibration methods and techniques, including various approaches to the problem of
direction-dependent effects (DDEs). However, acceptance of the RIME in the radio astronomical community at large has been slow,
which is partially due to the limited availability of software to exploit its power, and the sparsity of practical results. This needs to
change urgently.
Aims. This series of papers aims to place recent developments in the treatment of DDEs into one RIME-based mathematical frame-
work, and to demonstrate the ease with which the various effects can be described and understood. It also aims to show the benefits
of a RIME-based approach to calibration.
Methods. Paper I re-derives the RIME from first principles, extends the formalism to the full-sky case, and incorporates DDEs.
Paper II then uses the formalism to describe self-calibration, both with a full RIME, and with the approximate equations of older
software packages, and shows how this is affected by DDEs. It also gives an overview of real-life DDEs and proposed methods of
dealing with them. Finally, in Paper III some of these methods are exercised to achieve an extremely high-dynamic range calibration
of WSRT observations of 3C 147 at 21 cm, with full treatment of DDEs.
Results. The RIME formalism is extended to the full-sky case (Paper I), and is shown to be an elegant way of describing calibration
and DDEs (Paper II). Applying this to WSRT data (Paper III) results in a noise-limited image of the field around 3C 147 with a very
high dynamic range (1.6 million), and none of the off-axis artifacts that plague regular selfcal. The resulting differential gain solutions
contain significant information on DDEs and errors in the sky model.
Conclusions. The RIME is a powerful formalism for describing radio interferometry, and underpins the development of novel cali-
bration methods, in particular those dealing with DDEs. One of these is the differential gains approach used for the 3C 147 reduction.
Differential gains can eliminate DDE-related artifacts, and provide information for iterative improvements of sky models. Perhaps
most importantly, sources as faint as 2 mJy have been shown to yield meaningful differential gain solutions, and thus can be used as
potential calibration beacons in other DDE-related schemes.

Key words. methods: numerical – methods: analytical – methods: data analysis – techniques: interferometric –
techniques: polarimetric

Introduction to the series

The measurement equation of a generic radio interferome-
ter (henceforth referred to as the RIME) was formulated by
Hamaker et al. (1996) after almost 50 years of radio astronomy.
Prior to the RIME, mathematical models of radio interferome-
ters (as implemented by a number of software packages such
as AIPS, Miriad, NEWSTAR, DIFMAP) were somewhat ad hoc
and approximate. Despite this (and in part thanks to the careful
design of existing instruments), the technique of self-calibration
(Cornwell & Wilkinson 1981) has allowed radio astronomers to
achieve spectacular results. However, by the time the RIME was
formulated, even older and well-understood instruments such
as the Westerbork Synthesis Radio Telescope (WSRT) and the
Very Large Array (VLA) were beginning to expose the lim-
itations of these approximate models. New instruments (and
upgrades of older observatories), such as the current crop of
Square Kilometer Array (Schilizzi 2004) “pathfinders”, and in-
deed the SKA itself, were already beginning to loom on the hori-
zon. These new instruments exhibit far more subtle and elabo-
rate observational effects, due not only to their greatly increased

sensitivity, but also to new features of their design. In particular,
while traditional selfcal only deals with direction-independent
effects (DIEs), calibration of these new instruments requires us
to deal with direction-dependent effects (DDEs), or effects that
vary across the field of view (FoV) of the instrument. Following
Noordam & Smirnov (2010), I shall refer to generations of cali-
bration methods, with first-generation calibration (1GC) predat-
ing selfcal, 2GC being traditional selfcal as implemented by the
aforementioned packages, and 3GC corresponding to the bur-
geoning field of DDE-related methods and algorithms.

It is indeed quite fortunate that the emergence of the RIME
formalism has provided us with a complete and elegant math-
ematical framework for dealing with observational effects, and
ultimately DDEs. Oddly enough, outside of a small community
of algorithm developers that have enthusiastically accepted the
formalism and put it to good use, uptake of RIME by radio as-
tronomers at large has been slow. Even more worryingly, almost
15 years after the first publication, the formalism is hardly ever
taught to the new generation of students. This is worrying, be-
cause in my estimation, the RIME should be the cornerstone
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of every entry-level interferometry course! In part, this slow
acceptance has been shaped by the availability of software.
Today’s radio astronomers rely almost exclusively on the 2GC
software packages mentioned above, whose internal paradigms
are rooted in the selfcal developments of the 1980s and lack an
explicit RIME1. On the other hand, relatively few observations
were really sensitive enough to push the limits of (or have their
science goals compromised by) 2GC. The continued success of
legacy packages has meant that the thinking about interferom-
etry and calibration has still been largely shaped by pre-RIME
paradigms. What has not helped this situation is that new soft-
ware exploiting the power of the RIME has been slow to emerge,
and practical results even more so – but see Paper III (Smirnov
2011b) of this series.

On the other hand, from my personal experience of teaching
the RIME at several workshops, once the penny drops, people
tend to describe it in terms such as “obvious”, “simple”, “intu-
itive”, “elegant” and “powerful”. This points at an explanatory
gap in the literature. Paper I of this series therefore tries to ad-
dress this gap, recasting existing ideas into one consistent math-
ematical framework, and showing where other approaches to the
RIME fit in. It first revisits the ideas of the original RIME pa-
pers (Hamaker et al. 1996; Hamaker 2000), deriving the RIME
from first principles. It then demonstrates how the fundamen-
tals of interferometry itself (and the van Cittert-Zernike theorem
in particular) follow from the RIME (rather than the other way
around!), in the process showing how the formalism can incor-
porate DDEs. This section also looks at alternative formulations
of the RIME and their practical implications, and shows where
they fit into the formalism. It also tries to clear up some contro-
versies and misunderstandings that have accumulated over the
years. Paper II (Smirnov 2011a) then discusses calibration in
RIME terms, and explicates the links between the RIME and
2GC implementations of selfcal.

Paper II also discusses the subject of DDEs, and places ex-
isting approaches into the mathematical framework developed
in the preceding sections. DDEs were outside the scope of the
original RIME publications, but various authors have been in-
corporating them into the RIME since. Rau et al. (2009) and
Bhatnagar (2009) provide an in-depth review of these develop-
ments, especially as pertaining to imaging and deconvolution.
The above authors have developed a description of DDEs using
the 4 × 4 Mueller matrix and coherency vector formalism of the
first RIME paper by Hamaker et al. (1996). The 4 × 4 formal-
ism has also been included in the 2nd edition of Thompson et al.
(2001, Sect. 4.8). In the meantime, Hamaker (2000) has recast
the RIME using only 2×2 matrices. The 2×2 form of the RIME
has far more intuitive appeal2, and is far better suited for de-
scribing calibration problems, yet has been somewhat unjustly
ignored in the literature. Addressing this perceived injustice is
yet another aim of these papers. (Section 6 describes the 4 × 4
vs. 2 × 2 formalisms in more detail.)

Last but certainly not least, Paper III (Smirnov 2011b) shows
an application of these concepts to real data. It presents a record
dynamic range (over 1.6 million) calibration of a WSRT obser-
vation, including calibration of DDEs. It then analyzes the re-
sults of this calibration, shows how the calibration solutions can

1 All 2GC packages do use some specific and limited form of the
RIME implicitly. This will be discussed further in Paper II (Smirnov
2011a).
2 This (admittedly subjective) judgment is firmly based on personal
experience of teaching the RIME.

be used to improve sky models, and demonstrates a rather im-
portant implication for the calibratability of future telescopes.

1. The RIME of a single source

Like many crucial insights, the RIME seems perfectly obvious
and simple in hindsight. In fact, it can be almost trivially de-
rived from basic considerations of signal propagation, as shown
by Hamaker et al. (1996). In this paper, I will essentially repeat
and elaborate on this derivation. This is not original work, but
there are several good reasons for reiterating the full argument,
as opposed to simply referring back to the original RIME pa-
pers. Firstly, some aspects of the basic RIME noted here are not
covered by the original papers at all. These are the commuta-
tion considerations of Sect. 1.6, the fact that Jones matrices and
coherency matrices behave differently under coordinate trans-
forms (for which reason I even propose a different typographical
convention for them), as discussed in Sect. 6.3, and the 1/2-vs.-
1 controversy of Sect. 7.2. Then there’s the fact that the 2×2 ver-
sion of the formalism proposed by Hamaker (2000) and and
employed here provides for a much clearer and more intuitive
picture that the original 4 × 4 derivation (see Sect. 6.1 for a dis-
cussion), and so deserves far more exposure in the literature than
the sole Hamaker paper to date. Finally, I want to establish some
typographical conventions and mathematical nomenclature, and
lay the groundwork for my own extensions of the formalism,
which start at Sect. 3. This seemed sufficient reason to give a
complete derivation of the RIME from scratch.

In Sects. 2 and 3, I extend the 2×2 formalism into the image-
plane domain, show how the van Cittert-Zernike (VCZ) theo-
rem naturally follows from the RIME, and sketch the problem
of DDEs. Section 4 elaborates some RIME-based closure rela-
tionships, Sect. 5 then examines some important limitations and
boundaries of the RIME formalism, and Sect. 6 looks at alterna-
tive formulations of the RIME. Finally, Sect. 7 attempts to clear
up some errors and controversies surrounding the formalism.

1.1. Signal propagation

Consider a single source of quasi-monochromatic signal (i.e. a
sky consisting of a single point source). The signal at a fixed
point in space and time can be then be described by the complex
vector e. Let us pick an orthonormal xyz coordinate system, with
z along the direction of propagation (i.e. from antenna to source).
In such a system, e can be represented by a column vector of
2 complex numbers:

e =
(

ex
ey

)
.

Our fundamental assumption is linearity: all transformations
along the signal path are linear w.r.t. e. Basic linear algebra tells
us that all linear transformations of a 2-vector can be represented
(in any given coordinate system) by a matrix multiplication:

e′ = J e,

where J is a 2 × 2 complex matrix known as the Jones matrix
(Jones 1941). Obviously, multiple effects along the signal propa-
gation path correspond to repeated matrix multiplications, form-
ing what I call a Jones chain. We can regard multiple effects
separately and write out Jones chains, or we can collapse them
all into a single cumulative Jones matrix as convenient:

e′ = Jn Jn−1...J1e = J e. (1)
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The order of terms in a Jones chain corresponds to the physical
order in which the effects occur along the signal path. Since ma-
trix multiplication does not (in general) commute, we must be
careful to preserve this order in our equations.

Now, the signal hits our antenna and is ultimately converted
into complex voltages by the antenna feeds. Let us further as-
sume that we have two feeds a and b (for example, two linear
dipoles, or left/right circular feeds), and that the voltages va and
vb are linear w.r.t. e. We can formally treat the two voltages as a
voltage vector u, analogous to e. Their linear relationship is yet
another matrix multiplication:

u =

(
va
vb

)
= J e. (2)

Equation (2) can be thought of as representing the fundamen-
tal linear relationship between the voltage vector u as measured
by the antenna feeds, and the “original” signal vector e at some
arbitrarily distant point, with J being the cumulative product of
all propagation effects along the signal path (including electronic
effects in the antenna/feed itself). I shall call refer to this J as the
total Jones matrix, as distinct from the individual Jones terms in
a Jones chain.

1.2. The visibility matrix

Two spatially separated antennas p and q measure two inde-
pendent voltage vectors up, uq. In an interferometer, these are
fed into a correlator, which produces 4 pairwise correlations be-
tween the components of up and uq:

〈vpav
∗
qa〉, 〈vpav

∗
qb〉, 〈vpbv

∗
qa〉, 〈vpbv

∗
qb〉. (3)

Here, angle brackets denote averaging over some (small) time
and frequency bin, and x∗ is the complex conjugate of x. It is
convenient for our purposes to arrange these four correlations
into the visibility matrix3 Vpq:

Vpq = 2

( 〈vpav
∗
qa〉 〈vpav

∗
qb〉

〈vpbv
∗
qa〉 〈vpbv

∗
qb〉

)

I introduce a factor of 2 here, for reasons explained in Sect. 7.2.
It is easily seen that Vpq can be written as a matrix product of up
(as a column vector), and the conjugate of uq (as a row vector):

Vpq = 2

〈(
vpa
vpb

)
(v∗qa, v

∗
qb)

〉
= 2〈upu

H
q 〉. (4)

Here, H represents the conjugate transpose operation (also called
a Hermitian transpose).

1.3. The RIME emerges

Starting with some arbitrarily distant vector e, our signal travels
along two different paths to antennas p and q. Following Eq. (2),
each propagation path has its own total Jones matrix, J p and Jq.
Combining Eqs. (2) and (4), we get:

Vpq = 2〈J pe(Jqe)H〉 = 2〈J p(eeH)JH
q 〉. (5)

3 Hamaker (2000) calls Vpq the coherency matrix, in order to distin-
guish it from traditional scalar visibilities. Since the elements of the
matrix are precisely the complex visibilities, I submit visibility matrix
as a more logical term.

Assuming that J p and Jq are constant over the averaging inter-
val4, we can move them outside the averaging operator:

Vpq = 2J p〈eeH〉JH
q = 2J p

( 〈exe∗x〉 〈exe∗y〉
〈eye∗x〉 〈eye∗y〉

)
JH

q . (6)

The bracketed quantities here are intimately related to the defi-
nition of the Stokes parameters (Born & Wolf 1964; Thompson
et al. 2001). Hamaker & Bregman (1996) explicitly show that

2

( 〈exe∗x〉 〈exe∗y〉
〈eye∗x〉 〈eye∗y〉

)
=

(
I + Q U + iV

U − iV I − Q

)
= B (7)

I now define the brightness matrix B as the right-hand side5 of
Eq. (7). This gives us the first form of the RIME, that of a single
point source:

Vpq = J pBJH
q . (8)

Or in expanded form:

(
vaa vab

vba vbb

)
=

(
j11p j12p

j21p j22p

) (
I + Q U + iV

U − iV I − Q

) (
j11q j12q

j21q j22q

)H

which quite elegantly ties together the observed visibilities Vpq
with the intrinsic source brightness B, and the per-antenna
terms J p and Jq.

Note that Eq. (8) holds in any coordinate system. The vec-
tor e, the brightness matrix B that is derived from it, and the lin-
ear transformations J p and Jq are distinct mathematical entities
that are independent of coordinate systems; choosing a coordi-
nate basis associates a specific representation with e, B and J ,
manifesting itself in a 2-vector or a 2 × 2 matrix populated with
specific complex numbers. For example, it is quite possible (and
sometimes desirable) to rewrite the RIME in a circular polariza-
tion basis. This is discussed further in Sect. 6.3. In this paper, I
shall use an orthonormal xyz basis unless otherwise stated.

1.4. Some typographical conventions

Throughout this series of papers, I shall adopt the following ty-
pographical conventions for formulas:

Scalar quantities will be indicated by lower- and uppercase ital-
ics: ex, I,Kp.

Vectors will be indicated by lowercase bold italics: e.
Jones matrices will be indicated by uppercase bold italics: J . As

a special case, scalar matrices (Sect. 1.6) will be indicated by
normal-weight italics: Kp.

Visibility, coherency and brightness matrices will be indicated
by sans-serif font: B,Vpq,Xpq. This emphasizes their dif-
ferent mathematical nature (and in particular, that they
transform differently under change of coordinate frame,
Sect. 6.3).

4 This is a crucial assumption, which I will revisit in Sect. 5.2.
5 Following a long-standing controversy, I have decided to break with
Hamaker (2000) by omitting 1

2 from the definition of B, and adding a
factor 2 to the definition of Vpq in Eq. (4). The reasons for this will be
spelled out in Sect. 7.2.

Page 3 of 11



A&A 527, A106 (2011)

1.5. The “onion” form

We can also choose to expand J p and Jq into their associated
Jones chains, as per Eq. (1). This results in the rather pleasing
“onion” form of the RIME:

Vpq = J pn(...(Jp2(J p1BJH
q1)JH

q2)...)JH
qm (9)

Intuitively, this corresponds to various effects in the signal path
applying sequential layers of “corruptions” to the original source
brightness B. Note that the two signal paths can in principle be
entirely dissimilar, making the “onion” asymmetric (hence the
use of n � m for the outer indices). An example of this is VLBI
with ad hoc arrays composed of different types of telescopes.
One of the strengths of the RIME is its ability to describe hetero-
geneous interferometer arrays with dissimilar signal propagation
paths.

1.6. An elementary Jones taxonomy

Different propagation effects are described by different kinds of
Jones matrices. The simplest kind of matrix is a scalar matrix,
corresponding to a transformation that affects both components
of the e vector equally. I shall use normal-weight italics (K) to
emphasize scalar matrices. An example is the phase delay matrix
below:

K = eiφ ≡
(

eiφ 0
0 eiφ

)
= eiφ

(
1 0
0 1

)
.

An important property of scalar matrices is that they have the
same representation in all coordinate systems, so scalarity is de-
fined independently of coordinate frame.

Diagonal matrices correspond to effects that affect the two
e components independently, without intermixing. Note that un-
like scalarness, diagonality does depend on choice of coordinate
systems. For example, if we consider linear dipoles, their elec-
tronic gains are (nominally) independent, and the corresponding
Jones matrix is diagonal in an xy coordinate basis:

G =
(
gx 0
0 gy

)
.

The gains of a pair of circular receptors, on the other hand, are
not diagonal in an xy frame (but are diagonal in a circular polar-
ization frame – see Sect. 6.3).

Matrices with non-zero off-diagonal terms intermix the two
components of e. A special case of this is the rotation matrix:

Rot φ =

(
cosφ − sin φ
sinφ cosφ

)
.

Like diagonality, the property of being a rotation matrix also de-
pends on choice of coordinate frame. Examples of rotation ma-
trices (in an xy frame) are rotation through parallactic angle P,
and Faraday rotation in the ionosphere F. Note also that rotation
in an xy frame becomes a special kind of diagonal matrix in the
circular frame (see Sect. 6.3).

It is important for our purposes that, while in general matrix
multiplication is non-commutative, specific kinds of matrices do
commute:

1. Scalar matrices commute with everything.
2. Diagonal matrices commute among themselves.
3. Rotation matrices commute among themselves6.

6 Note that this is only true for 2 × 2 matrices. Higher-order rotations
do not commute.

Rules 2 and 3 are not very satisfactory as stated, because “diago-
nal” and “rotation” are properties defined in a specific coordinate
frame, while (non-)commutation is defined independently of co-
ordinates: two linear operators A and B either commute or they
don’t, so their matrix representations must necessarily commute
(or not) irrespective of what they look like for a particular basis.
Let us adopt a practical generalization:

The commutation rule: if there exists a coordinate basis in
which A and B are both diagonal (or both a rotation7), then
AB = B A in all coordinate frames.

We shall be making use of commutation properties later on.

1.7. Phase and coherency

Equation (8) is universal in the sense that the J p and Jq terms
represent all effects along the signal path rolled up into one
2 × 2 matrix. It is time to examine these in more detail. In the
ideal case of a completely uncorrupted observation, there is one
fundamental effect remaining – that of phase delay associated
with signal propagation. We are not interested in absolute phase,
since the averaging operator implicit in a correlation measure-
ment such as Eq. (3) is only sensitive to phase difference between
voltages up and uq.

Phase difference is due to the geometric pathlength differ-
ence from source to antennas p and q. For reasons discussed in
Sect. 5.2, we want to minimize this difference for a specific di-
rection, so a correlator will usually introduce additional delay
terms to compensate for the pathlength difference in the chosen
direction, effectively “steering” the interferometer. This direc-
tion is called the phase centre. The conventional approach is to
consider phase differences on baseline pq, but for our purposes
let’s pick an arbitrary zero point, and consider the phase differ-
ence at each antenna p relative to the zero point.

Let us adopt the conventional coordinate system8 and nota-
tions (see e.g. Thompson et al. 2001), with the z axis pointing
towards the phase centre, and consider antenna p located at co-
ordinates up = (up, vp, wp). The phase difference at point up rel-
ative to u = 0, for a signal arriving from direction σ, is given by

κp = 2πλ−1(upl + vpm + wp(n − 1)),

where l,m, n =
√

1 − l2 − m2 are the direction cosines of σ, and
λ is signal wavelength. It is customary to define u in units of
wavelength, which allows us to omit the λ−1 term. Following
Noordam (1996), I can now introduce a scalar K-Jones ma-
trix representing the phase delay effect. After all, phase delay is
just another linear transformation of the signal, and is perfectly
amenable to the Jones formalism:

Kp = e−iκp = e−2πi(upl+vpm+wp(n−1)) (10)

The RIME for a single uncorrupted point source is then simply:

Vpq = KpBKH
q (11)

7 As noted above, rotation can become diagonality through change of
coordinate basis, so this doesn’t actually add anything to our general
rule.
8 Note that there is some unfortunate confusion in coordinate systems
used in radio interferometry. The IAU (1973) defines Stokes parameters
in a right-handed coordinate system with x and y in the plane of the sky
towards North and East, and the z axis pointing towards the observer.
The conventional lm frame has l pointing East and m North. In practice,
this means that rotation through parallactic angle must be applied in one
direction in the lm frame, and in the opposite direction in the polariza-
tion frame. The formulations of the present paper are not affected.
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Substituting the exponents for Kp from Eq. (10), and remember-
ing that scalar matrices commute with everything, we can recast
Eq. (11) in a more traditional form9:

Vpq = Be−2πi(upql+vpqm+wpq(n−1)), upq = up − uq, (12)

which expresses the visibility as a function of baseline uvw co-
ordinates upq. I shall call the visibility matrix given by Eqs. (11)
or (12) the source coherency, and write it as Xpq. In the tradi-
tional view of radio interferometry, Xpq is a measurement of the
coherency function X(u, v, w) at point upq, vpq, wpq (with X being
a 2 × 2 complex matrix rather than the traditional scalar com-
plex function). For the purposes of these papers, let us adopt an
operational definition of source coherency as being the visibility
that would be measured by a corruption-free interferometer. For
a point source, the coherency is given by Eq. (11).

1.8. A single corrupted point source

A real-world interferometer will have some “corrupting” effects
in the signal path, in addition to the nominal phase delay Kp.
Since the latter is scalar and thus commutes with everything, we
can move it to the beginning of the Jones chain, and write the
total Jones J p of Eq. (8) as

J p = GpKp,

where Gp represents all the other (corrupting) effects. We can
then formulate the RIME for a single corrupted point source as:

Vpq = GpXpqGH
q , (13)

where Xpq is the source coherency, as defined above.

2. Multiple discrete sources

Let us now consider a sky composed of N point sources. The
contributions of each source to the measured visibility matrix
Vpq add up linearly. The signal propagation path is different for
each source s and antenna p, but each path can be described by
its own Jones matrix J sp. Equation (8) then becomes:

Vpq =
∑

s

J spBsJH
sq. (14)

Remember that each J sp is a product of a (generally non-
commuting) Jones chain, corresponding to the physical order of
effects along the signal path:

J sp = J spn...J sp1,

where effects represented by the right side of the chain (...J sp1)
occur “at the source”, and effects on the left side of the chain
(J spn...) “at the antenna”. Somewhere along the chain is the
phase term Ksp, but since (being a scalar matrix) it commutes
with everything, we are free to move it to any position in the
product.

Some elements in the chain may be the same for all sources.
This tends to be true for effects at the antenna end of the signal

9 The sign of the exponent in these equations is a matter of convention,
and is therefore subject to perennial confusion. WSRT software uses
“−”, but has used “+” in the past. VLA software seems to use “+”.
Fortunately, in practice it is usually easy to tell which convention is
being used, and conjugate the visibilities if needed.

path, such as electronic gain. Let us then collapse the chain into
a product of three Jones matrices:

J sp = GpEspKsp

Gp is the source-independent “antenna” (left) side of the Jones
chain, i.e. the product of the terms beginning with J spn, up to and
not including the leftmost source-dependent term (if the entire
chain is source-dependent, Gp is simply unity), Esp is the source-
dependent remainder of the chain, and Ksp is the phase term. We
can then recast Eq. (14) as follows:

Vpq = Gp

⎛⎜⎜⎜⎜⎜⎝
∑

s

EspKspBsK
H
sqEH

sq

⎞⎟⎟⎟⎟⎟⎠ GH
q (15)

Or, using the source coherency of Eq. (11):

Vpq = Gp

⎛⎜⎜⎜⎜⎜⎝
∑

s

EspXspqEH
sq

⎞⎟⎟⎟⎟⎟⎠ GH
q (16)

Gp describes the direction-independent effects (DIEs), or the uv-
Jones terms, and Esp the direction-dependent effects (DDEs), or
the sky-Jones terms.

In principle, the sum in Eq. (16) should be taken over all
sufficiently bright10 sources in the sky, but in practice our FoV
is limited by the voltage beam pattern of each antenna, or by the
horizon, in the case of an all-sky instrument such as the Low
Frequency Array (LOFAR). In RIME terms, beam gain is just
another Jones term in the chain, ensuring Esp → 0 for sources
outside the beam.

If the observed field has little to none spatially extended
emission, this form of the RIME is already powerful enough
to allow for calibration of DDEs, as I shall show in Paper III
(Smirnov 2011b).

3. The full-sky RIME

In the more general case, the sky is not a sum of discrete sources,
but rather a continuous brightness distribution B(σ), where σ
is a (unit) direction vector. For each antenna p, we then have
a Jones term J p(σ), describing the signal path for direction σ.
To get the total visibility as measured by an interferometer, we
must integrate Eq. (8) over all possible directions, i.e. over a unit
sphere:

Vpq =

∫
4π

J p(σ)B(σ)JH
q (σ) dΩ.

This spherical integral is not very tractable, so we perform a sine
projection of the sphere onto the plane (l,m) tangential at the
field centre11. Note that this analysis is fully analogous to that of
Thompson et al. (2001, Sect. 3.1), with only the integrand being
somewhat different. The integral then becomes:

Vpq =

�

lm

J p(l)B(l)JH
q (l)

dl dm
n
, where n =

√
1 − l2 − m2.

I’m going to use l and (l,m) interchangeably from now on. By
analogy with Eq. (15), we now decompose J p(l) into a direction-
independent part G, a direction-dependent part Ē, and the phase
term K:

J p(l) = GpĒp(l)Kp(l) = Gp Ēp(l)e−2πi(upl+vpm+wp(n−1)).

10 Brighter than the noise, that is – see Sect. 5.1.
11 Or the pole, for East-West arrays, which does not materially change
any of the arguments.
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Substituting this into the integral, and commuting the K terms
around, we get

Vpq = Gp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
�

lm

1
n

ĒpB ĒH
q e−2πi(upql+vpqm+wpq(n−1)) dl dm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠GH
q . (17)

This equation is one form of a general full-sky RIME. It is
in fact a type of three-dimensional Fourier transform; the non-
coplanarity term in the exponent, wpq(n − 1), is what prevents
us from treating it as the much simpler 2D transform. Since
wpq = wp −wq, we can decompose the non-coplanarity term into
per-antenna terms Wp =

1√
n
e−2πiwp(n−1). These can be thought of

direction-dependent Jones matrices in their own right, and sub-
sumed into the overall sky-Jones term by defining Ep = ĒpWp.
The full-sky RIME (Eq. (17)) can then be rewritten using a 2D
Fourier Transform of the apparent sky as seen by baseline pq, or
Bpq:

Vpq = Gp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
�

lm

Bpqe−2πi(upql+vpqm) dl dm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠GH
q , (18)

Bpq ≡ EpBEq

I shall return to this general formulation in Paper II (Smirnov
2011a). In the meantime, consider the import of those pq indices
in Bpq. They are telling us that we’re measuring a 2D Fourier
Transform of the sky – but the “sky” is different for every base-
line! This violates the fundamental premise of traditional self-
cal, which assumes that we’re measuring the F.T. of one com-
mon sky. From the above, it follows that this premise only holds
when all DDEs are identical across all antennas: Ep(l) ≡ E(l)
(or at least where B(l) � 0). Only under this condition does the
apparent sky Bpq become the same on all baselines (in the tradi-
tional view, this corresponds to the “true” sky attenuated by the
power beam):

Bpq(l) ≡ Bapp(l) = E(l)B(l)EH(l).

If this is met, we can then rewrite the full-sky RIME as:

Vpq = GpXpqGH
q , (19)

where Xpq = X(upq, vpq), and the matrix function X(u) is sim-
ply the (element-by-element) two-dimensional Fourier trans-
form12 of the matrix function Bapp(l). I shall also write this
as X = FBapp. The similarity to Eq. (13) of a single point
source is readily apparent. For obvious reasons, I shall call X(u)
the sky coherency. Effectively, we have derived the van Cittert-
Zernike theorem (VCZ), the cornerstone of radio interferometry
(Thompson et al. 2001, Sect. 14.1), from the basic RIME!

Such an approach turns the original original coherency ma-
trix formulation of Hamaker (2000) on its head. Note that
Eq. (19) here is the same as Eq. (2) of that work. In the RIME
papers, Hamaker et al. defer to VCZ, treating the coherency as
a “given” (while recasting it to matrix form) to which Jones ma-
trices then apply. Treating phase (K) as a Jones matrix in its own
right (Noordam 1996) allows for a natural extension of the Jones
formalism into the (l,m) plane, and shows that VCZ is actually
a consequence of the RIME rather than being something extrin-
sic to it. This also allows DDEs to be incorporated into the same
formalism, in a manner similar to that suggested for w-projection
(Cornwell et al. 2008). I shall return to this subject in Paper II
(Smirnov 2011a).

12 Note that I’m using u as a shorthand for both (u, v) and (u, v, w), de-
pending on context.

3.1. Time variability and the fundamental assumption
of selfcal

I have hitherto ignored the time variable. Signal propagation ef-
fects, and indeed the sky itself, do vary in time, but the RIME de-
scribes an effectively instantaneous measurement (ignoring for
the moment the issue of time averaging, which will be consid-
ered separately in Sect. 5.2). Time begins to play a critical role
when we consider DDEs.

At any point in time, an interferometer given by Eq. (19)
measures the coherency function X(u) at a number of points upq

(i.e. for all baselines pq). This “snapshot” measurement gives a
limited sampling of the uv plane. To sample the uv plane more
fully, we usually rely on the Earth’s rotation, which over several
hours effectively “swings” every baseline vector upq through an
arc in the uv plane. Therefore, for Eq. (19) to hold throughout
an observation, we must additionally assume that the apparent
sky Bapp remains constant over the observation time! In other
words, unless we’re dealing with snapshot imaging, the Ep ≡ E
assumption must be further augmented:

Ep(t, l) ≡ Ep(l) ≡ E(l) for all t, p. (20)

This equation captures the fundamental assumption of tradi-
tional selfcal. I shall call DDEs that satisfy Eq. (20) trivial
DDEs. As shown above, trivial DDEs effectively replace the true
sky B by a single apparent sky Bapp, and are not usually a prob-
lem for calibration, since they can be corrected for entirely in the
image plane13. For example, the primary beam gain is usually
treated as a trivial DDE in 2GC packages (see Paper II, Smirnov
2011a, Sect. 2.1).

Equation (20) is most readily met with narrow FoVs (i.e.
with Ep rapidly going to zero away from the field centre, leaving
little scope for other variations), small arrays (small wp, also all
stations see through the same atmosphere), higher frequencies
(narrow FoV, less ionospheric effects), and also with coplanar
arrays such as the WSRT (wp ≡ 0, thus Wp ≡ 1). The new crop
of instruments is, of course, trending in the opposite direction
on all these points, and is thus subject to far more severe and
non-trivial DDEs.

4. Matrix closures and singularities

Scalar closure relationships have played an important role in
2GC calibration, both as a diagnostic tool, and as an observable.
Traditionally, these are expressed in terms of a three-way phase
closure and a four-way amplitude closure (see e.g. Thompson
et al. 2001, Sect. 10.3). Since the underlying premise of a closure
relationship is that observed scalar visibilities can be expressed
in terms of per-antenna scalar gains, and the RIME is a gener-
alization of the same premise in matrix terms, it seems worth-
while to see if a general matrix (i.e. fully polarimetric) closure
relationship can be derived.

Indeed, in the case of a single point source, we can write out
a four-way closure for antennas m, n, p, q as follows:

VmnV−1
pnVpqV−1

mq = 1 (21)

The above equation can be easily verified by substituting in
Eq. (8) for each visibility term, and remembering that (AB)−1 =
B−1 A−1.

13 Even then things are not always easy. Rapid variation in frequency,
such as the 17 MHz “ripple” of the WSRT primary beam (see Paper II,
Smirnov 2011a, Sect. 2.1.1) can cause considerable difficulty for spec-
tral line calibration, even if the DDE is trivial in the sense of Eq. (20).
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Since matrix inversion is involved, the essential requirement
here is non-singularity of all matrices in Eq. (8). The brightness
matrix B is non-singular by definition (unless it’s trivially zero),
but what does it mean for a Jones matrix to be singular? Some
examples of singular matrices are:

(
a 0
0 0

)
,

(
a a
0 0

)
,

(
a b
a b

)
, and

(
a a
b b

)
.

The physical meaning of a singular Jones matrix can be grasped
by substituting these into Eq. (2). The first two examples
correspond to an antenna measuring zero voltage on one of the
receptors (e.g. a broken wire). The latter two are examples of
redundant measurements: both receptors will measure the same
voltage, or linearly dependent voltages (consider, e.g., a flat aper-
ture array, with a source in the plane of the dipoles). In all four
cases there’s irrecoverable loss of polarization information, so
a polarization closure relation like Eq. (21) breaks down. (Note
that the scalar analogue of this is simply a null scalar visibility,
in which case scalar closures also break down.)

In the wide-field or all-sky case (Eq. (18)), simple closures
(whether matrix or scalar) no longer apply. However, the con-
tribution of each discrete point source to the overall visibility
is still subject to a closure relationship. It is perhaps useful to
formulate this in differential terms. Consider a brightness distri-
bution B(0)(l), and let this correspond to a set of observed visi-
bilities V(0)

pq . Adding a point source of flux B1 at position l1 gives
us the brightness distribution:

B(1)(l) = B(0)(l) + δ(l − l1)B1,

where δ is the Kronecker delta-function, with corresponding ob-
served visibilities V(1)

pq . From the RIME (and Eq. (18) in partic-
ular) it then necessarily follows that the differential visibilities
ΔVpq = V(1)

pq − V(0)
pq will then satisfy the matrix closure relation-

ship of Eq. (21).

5. Limitations of the RIME formalism

5.1. Noise

The RIME as presented here and in the original papers is for-
mulated for a noise-free measurement. In practice, each element
of the Vpq matrix (i.e. each complex visibility) is accompanied
by uncorrelated Gaussian noise in the real and imaginary parts; a
detailed treatment of this can be found in Thompson et al. (2001,
Sect. 6.2). The noise level imposes a hard sensitivity limit on any
given observation, which has a few implications relevant to our
purposes:

– “Reaching the noise” has become the “gold standard” of cal-
ibration (see Paper II, Smirnov 2011a). Many reductions are
limited by calibration artifacts rather than the noise.

– Corrections to the data (however one defines the term) can
potentially distort the noise level across an observation in
complicated ways, so due care must be taken.

– Faint sources below the noise threshold can be effectively
ignored.

– Numerical approximations can be considered “good
enough” once they get to within the noise (assuming no
systematic errors), but see Paper III (Smirnov 2011b,
Sect. 2.6, Fig. 17) for a big caveat to this.

The latter two considerations are what I refer to by “sufficiently
faint” sources and “sufficiently close” approximations through-
out this series of papers.

5.2. Smearing and decoherence

In Sect. 1.3, when going from Eqs. (5) to (6), we assumed that
the Jones matrix J p is constant over the time/frequency bin
of the correlator. That this is, strictly speaking, never actually
the case can be seen from the definition of the K-Jones term
in Eq. (10). The vector up is defined in units of wavelength,
making Kp variable in frequency. The Earth’s rotation causes
up to rotate in our (fixed relative to the sky) coordinate frame,
which also makes variable in time. To take this into account, the
RIME (in any form) should be rewritten as an integration over a
time/frequency interval. For example, the basic RIME of Eq. (8),
when considering the integration bin [t0, t1] × [ν0, ν1], should be
properly rewritten as:

〈Vpq〉 = 1
ΔtΔν

t1∫
t0

ν1∫
ν0

Vpq(t, ν) dν dt

=
1
ΔtΔν

t1∫
t0

ν1∫
ν0

J p(t, ν)BJH
q (t, ν) dν dt, (22)

which becomes Eq. (8) at the limit of Δt,Δν → 0. Since J con-
tains K, the complex phase of which is variable in frequency
and time, the integration in Eq. (22) always results in a net
loss of amplitude in the measured 〈Vpq〉. This mechanism is
well-known in classical interferometry, and is commonly called
time/bandwidth decorrelation or smearing. Note that a phase
variation in any other Jones term in the signal chain will have
a similar effect. The VLBI community knows of it in the guise
of decoherence due to atmospheric phase variations; in RIME
terms, atmospheric decoherence is just Eq. (22) applied to iono-
spheric Z-Jones or tropospheric T -Jones14. I shall use the term
decoherence for the general effect; and smearing for the specific
case of decoherence caused by the K term.

The mathematics of smearing are well-known for the scalar
case, see e.g. Thompson et al. (2001, Sect. 6.4) and Bridle &
Schwab (1999). Smearing increases with baseline length (upq)
and distance from phase center (l,m). Since the noise amplitude
does not decrease, smearing results in a decrease of sensitivity.
Hamaker et al. (1996) mention smearing in the context of the
RIME. Since integration (and thus smearing) of a matrix equa-
tion is an element-by-element operation, treatment of smearing
within the RIME formalism is a trivial extension of the scalar
equations.

For the general case of decoherence, a useful first-order ap-
proximation can be obtained by assuming that Δt and Δν are
small enough that the amplitude of Vpq remains constant, while
the complex phase varies linearly. The relation

x0∫
0

eixdx = sinc
x0

2
eix0/2,

14 Small interferometers see very little atmospheric decoherence: if
Zp ≈ Zq (as is the case for closely located stations), then ZpZH

q ≈ 1,
so there is no net phase contribution to the integrand of Eq. (22).
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which is well-known from the case of smearing with a square
taper, then gives us an approximate equation for decoherence, in
terms of the phase changes in time (ΔΨ) and frequency (ΔΦ):

〈Vpq〉 � sinc
ΔΨ

2
sinc
ΔΦ

2
Vpq(tmid, νmid), (23)

where tmid = (t0 + t1)/2, νmid = (ν0 + ν1)/2,

ΔΨ = arg Vpq(t1, νmid) − arg Vpq(t0, νmid),

ΔΦ = arg Vpq(tmid, ν1) − arg Vpq(tmid, ν0).

Equation (23) is straightforward to apply numerically, and is in-
dependent of the particular form of J responsible for the deco-
herence. However, the assumption of linearity in phase over the
time/frequency bin can only hold for the visibility of a single
source. In fact, it is easy to see that any approximation treat-
ing decoherence as an amplitude-only effect can, in principle,
only apply on a source-by-source basis – just consider the case
of smearing, which varies significantly with distance from phase
centre. In an equation like (16), the approximation can be ap-
plied to each term in the sum individually, or at least to as many
of the brightest sources as is practical. This approach was used
for the calibration described in Paper III (Smirnov 2011b).

5.3. Interferometer-based errors

The term interferometer-based errors refers to measurement er-
rors that cannot be represented by per-antenna terms. These are
also called closure errors, since they violate the closure relation-
ships of Sect. 4. When formulating Eq. (8), we assumed that the
visibility matrix Vpq output by the correlator is a perfect mea-
surement of correlations between antenna voltages. Closure er-
rors represent additional baseline-based effects. Assuming these
are linear, and following Noordam (1996), we could rewrite the
full-sky RIME of Eq. (19) as:

Vpq = Mpq ∗ (J pXpq JH
q ) + Apq, (24)

where Mpq is a 2 × 2 matrix of multiplicative interferometer er-
rors, Apq is a 2 × 2 matrix of additive errors, and “∗” represents
element-by-element (rather than matrix) multiplication.

Given a model for Xpq, observed data Vpq, and self-calibrated
per-antenna terms J p, it is trivial to estimate M and A us-
ing Eq. (24). It is also trivial to see that the equation is ill-
conditioned: any model X can be made to fit the data by choosing
suitable values for M and A. We therefore need to assume some
additional constraints, such as closure errors being fixed (or only
slowly varying) in time and/or frequency.

In practice, closure errors arise due to a combination of ef-
fects:

– The traditional “purely instrumental” cause is the use of ana-
log components in the signal chain and parts of the corre-
lator, which is typical of the previous generations of radio
interferometers. New telescope designs tend to digitize the
signal much closer to the receiver, and use all-digital corre-
lators, presumably eliminating instrumental closure errors.

– Smearing and decoherence (Sect. 5.2) is a baseline-based ef-
fect, and will thus manifest itself as a closure errors, unless
it is properly taken into account in the model for Xpq.

– In general, any source structure or flux not represented by
the model Xpq will also show up as a closure error.

A solution for M and/or A will tend to subsume all these effects.
This is dangerous, as it can actually attenuate sources in the final
images, as illustrated in Paper III (Smirnov 2011b, Sect. 1.5).
One must thus be very conservative with closure error solutions,
lest they become just another “fudge factor” in the equations.

5.4. A three-dimensional RIME?

Recent work by Carozzi & Woan (2009) highlights a limitation
of the 2 × 2 Jones formalism. They point out that since we’re
measuring a 3D brightness distribution, the radiation from off-
center sources is only approximately paraxial (equivalently, the
EM waves are only approximately transverse). From this it fol-
lows that a 2D description of the EMF based on a rank-2 vector
(the e used above) is insufficient, and a rank-3 formalism is pro-
posed.

The main implication of the Carozzi-Woan result for the
2 × 2 formalism is that the latter is still valid in general (at
least for dual-receptor arrays), but the full-sky RIME of Eq. (17)
must be augmented with an additional direction-dependent Jones
term called the xy-projected transformation matrix, designated
as T(xy) (see their Eq. (34)), which corresponds to a projection of
the 3D brightness distribution onto the plane of the receptors. If
all the receptors of the array are plane-parallel (Carozzi & Woan
call this a plane-polarized interferometer), T(xy) is a trivial DDE
(in the sense of Eq. (20)), manifesting itself as a polarization
aberration that increases with l,m (see their Fig. 2). For non-
parallel receptors, T(xy) should be a non-trivial DDE!

Classical dish arrays are plane-polarized by design, but de-
viate from this in practice due to pointing errors and other mis-
alignments. The resulting effect is expected to be tiny given the
typically narrow FoV of a dish, but it would be intriguing to see
whether it can be detected in deliberately mispointed WSRT ob-
servations, given the extremely high dynamic range routinely
achieved at the WSRT. On the other hand, an aperture array such
as LOFAR should show a far more significant deviation from the
plane-polarized case (due to the curvature of the Earth, as well as
the all-sky FoV). With LOFAR’s (as yet) relatively low dynamic
range and extreme instrumental polarization, the effect may be
challenging to detect at present. Further work on the subject is
urgently required, given the polarization purity requirements of
future telescopes (and in particular the SKA).

6. Alternative formulations

6.1. Mueller vs. Jones formalism

The original paper by Hamaker et al. (1996) formulated the
RIME in terms of 4 × 4 Mueller matrices (Mueller 1948). This
is mathematically fully equivalent to the 2 × 2 form introduced
by Hamaker (2000) in the fourth paper, and has since been
adopted by many authors (Noordam 1996; Thompson et al.
2001; Bhatnagar et al. 2008; Rau et al. 2009). In my view, this is
somewhat unfortunate, as the 2 × 2 formulation is both simpler
and more elegant, and has far more intuitive appeal, especially
for understanding calibration problems. For completeness, I will
make an explicit link to the 4 × 4 form here.

Instead of taking the matrix product of two voltage vectors up

and uq and getting a 2 × 2 visibility matrix, as in Eq. (4), we can
take the outer product of the two to get the visibility vector vpq:

upq = 2
〈
up ⊗ uHq

〉
= 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈vpav

∗
qa〉

〈vpav
∗
qb〉

〈vpbv
∗
qa〉

〈vpbv
∗
qb〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Combining this with Eq. (2), we get

upq = 2(J p ⊗ JH
q )(e ⊗ eH) = (J p ⊗ JH

q )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I + Q

U + iV
U − iV
I − Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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which then gives us the 4 × 4 form of Eq. (8):

upq = (J p ⊗ JH
q )SI = JpqSI. (25)

Here, Jpq = J p ⊗ Jq is a 4 × 4 matrix describing the combined
effect of the signal paths to antennas p and q, I is a column vec-
tor of the Stokes parameters (I,Q,U,V), and S is a conversion
matrix that turns the Stokes vector into the brightness vector15:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I + Q

U + iV
U − iV
I − Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The equivalent of the “onion” form of Eq. (9) is then:

upq = (J pn ⊗ JH
qn)...(J p1 ⊗ JH

q1)SI = Jpqn...Jpq1SI. (26)

Likewise, the full-sky RIME of Eq. (18) can be written in the
4 × 4 form as:

upq = Gpq

�

lm

Epq(l,m)SI(l,m)e−2πi(upql+vpqm+wpq(n−1)) dl dm.

(27)

This form of the RIME is particularly favoured when describ-
ing imaging problems (Bhatnagar et al. 2008; Rau et al. 2009).
It emphasizes that an interferometer performs a linear opera-
tion on the sky distribution I(l,m), via the linear operators Gpq,
Epq(l,m), and the Fourier Transform F , while eliding the inter-
nal structure of G and E.

On the other hand, if we’re interested in the underlying
physics of signal propagation (as is often the case for cali-
bration problems), then the 4 × 4 form of the RIME becomes
extremely opaque. When considering any specific set of prop-
agation effects (and its corresponding Jones chain), the outer
product operation turns simple-looking 2×2 Jones matrices into
an intractable sea of indices; see Bhatnagar et al. (2008, Eq. (4))
and Hamaker et al. (1996, Appendix A) for typical examples.
The 2 × 2 form provides a more transparent description of cali-
bration problems, and for this reason is also far better suited to
teaching the RIME. An excellent example of this transparency is
given in Paper II (Smirnov 2011a, Sect. 2.2.2), where I consider
the effect of differential Faraday rotation.

There are also potential computational issues raised by the
4×4 formalism. A naive implementation of, e.g., Eq. (26) incurs
a series of 4 × 4 matrix multiplications for each interferometer
and time/frequency point. Multiplication of two 4 × 4 matrices
costs 112 floating-point operations (flops), and the outer product
operation another 16. Therefore, each pair of Jones terms in the
chain incurs 128 flops. The same equation in 2 × 2 form invokes
12 floating-point operations (flops) per matrix multiplication, or
24 per each pair of Jones terms. This is roughly 5 times fewer
than the 4 × 4 case.

Often, the true computational bottleneck lies elsewhere, i.e.
in solving (for calibration) or gridding (for imaging), in which
case these considerations are irrelevant. However, when running
massive simulations (that is, using the RIME to predict visibil-
ities), my profiling of MeqTrees has often shown matrix multi-
plication to be the major consumer of CPU time. In this case,
implementing calculations using the 2× 2 form represents a sig-
nificant optimization.

15 A Mueller matrix represents a linear operation on Stokes vectors,
and so does not explicitly appear in these equations. For Eq. (25), the
equivalent Mueller matrix is S−1JpqS.

6.2. Jones-specific formulations

Formulations of the RIME such as Eqs. (18) or (16) are en-
tirely general and non-specific, in the sense that they allow for
any combination of propagation effects to be inserted in place
of the G and E terms. A specific formulation may be obtained
by inserting a particular sequence of Jones matrices. The first
RIME paper (Hamaker et al. 1996) already suggested a specific
Jones chain. This was further elaborated on by Noordam (1996),
and eventually implemented in AIPS++, which subsequently be-
came CASA. The Jones chain used by current versions of CASA
is described by Myers et al. (2010, Appendix E.1):

J p = BpGp Dp Ep PpTp. (28)

The Jones matrices given here correspond to particular effects
in the signal chain, with specific parameterizations (e.g. Bp is a
frequency-variable bandpass, Gp is time-variable receiver gain,
etc.). Other authors (Rau et al. 2009) suggest variations on this
theme.

Such a “Jones-specific” approach has considerable merit,
in that it shows how different real-life propagation effects fit
together, and gives us something specific to be thought about
and implemented in software. It does have a few pitfalls which
should be pointed out.

The first pitfall of this approach is that it tends to place the
trees firmly before the forest. A major virtue of the RIME is its
elegance and simplicity, but this gets obscured as soon as elab-
orate chains of Jones matrices are written out. I submit that the
RIME’s slow acceptance among astronomers at large is, in some
part, due to the literature being full of equations similar to (28).
That they are just specific cases of what is at core a very sim-
ple and elegant equation is a point perhaps so obvious that some
authors do not bother noting it, but it cannot be stressed enough!

The second pitfall is that an equation like (28), when imple-
mented in software, can be both too specific, and insufficiently
flexible. (Note that the CASA implementation specifies both the
time/frequency behaviour, and the form of the Jones terms, e.g.
G is diagonal and variable in time, B is diagonal and variable in
frequency, D has a specific “leakage” form, etc). For instance,
the calibration described in Paper III (Smirnov 2011b) cannot be
done in CASA, despite using an ostensibly much simpler form
of the RIME, because it includes a Jones term that was not antic-
ipated in the CASA design. A second major virtue of the RIME
is its ability to describe different propagation effects; this is im-
mediately compromised if only a specific and limited set of these
is chosen for implementation.

A final pitfall of the Jones-specific view is that it tends to
stereotype approaches to calibration. Equation (28) is a huge
improvement on the ad hoc approaches of older software sys-
tems, but in the end it is just some model of an interferome-
ter that happens to work well enough for “classically-designed”
instruments such as the VLA and WSRT, in their most com-
mon regimes. It is not universally true that polarization effects
can be completely described by a direction-independent leak-
age matrix (Dp), or bandpass by Bp – it just happens to be
a practical first-order model, which completely breaks down
for a new instrument such as LOFAR, where e.g. “leakage” is
strongly direction-dependent. In fact, even WSRT results can be
improved by departing from this model, as Paper III (Smirnov
2011b) will show. We must therefore take care that our thinking
about calibration does not fall into a rut marked out by a specific
series of Jones terms.
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6.3. Circular vs. linear polarizations

In Sect. 1, I mentioned that the RIME holds in any coordinate
system. Hamaker et al. (1996) briefly discussed coordinate trans-
forms in this context, but a few additional words on the subject
are required.

Field vectors e and Jones matrices J may be represented (by
a particular set of complex values) in any coordinate system, by
picking a pair of complex basis vectors in the plane orthogo-
nal to the direction of propagation. I have used an orthonormal
xy system until now. Another useful system is that of circular
polarization coordinates rl, whose basis vectors (represented in
the xy system) are er =

1√
2
(1,−i) and el =

1√
2
(1, i). Any other

pair of basis vectors may of course be used. In general, for any
two coordinate systems S and T, there will be a corresponding
2 × 2 conversion matrix T , such that eT = TeS, where eS and
eT represent the same vector in the S and T coordinate systems.
Likewise, the representation of the linear operator J transforms
as JT = T JST−1, while the brightness matrix B (or indeed any
coherency matrix) transforms as BT = TBSTH .

Of particular importance is the matrix for conversion from
linear to circularly polarized coordinates. This matrix is com-
monly designated as H (being the mathematical equivalent of
an electronic hybrid sometimes found in antenna receivers):

H =
1√
2

(
1 i
1 −i

)
H−1 =

1√
2

(
1 1
−i i

)
.

Consequently, the brightness matrix B, when represented in cir-
cular polarization coordinates, has the following form (I’ll use
the indices “” and “+” where necessary to disambiguate be-
tween circular and linear representations):

B = HB+HH =

(
I + V Q + iU

Q − iU I − V

)
.

While EMF vectors and Jones matrices may be represented us-
ing an arbitrary basis, the receptor voltages we actually measure
are specific numbers. The voltage measurement process thus im-
plies a preferred coordinate system, i.e. circular for circular re-
ceptors, and linear for linear receptors.

It is of course possible to convert measured data into a differ-
ent coordinate frame after the fact. It is also perfectly possible,
and indeed may be desirable, to mix coordinate systems within
the RIME, by inserting appropriate coordinate conversion matri-
ces into the Jones chain. A commonly encountered assumption
is that a “VLA RIME” must be written down in circular coordi-
nates and a “WSRT RIME” in linear, but this is by no means a
fundamental requirement! We’re free to express part of the signal
propagation chain in one coordinate frame, then insert conver-
sion matrices at the appropriate place in the equation to switch
to a different coordinate frame. In the onion form of the RIME
(Eq. (9)), this corresponds to a change of coordinate systems as
we go from one layer of the onion to another. For example:

Vpq = Gp H

⎛⎜⎜⎜⎜⎜⎝
∑

s

EspXspqEH
sq

⎞⎟⎟⎟⎟⎟⎠ HHGH
q .

One reason to consider the use of mixed coordinate systems is
the opportunity to optimize the representation of particular phys-
ical effects. As an example, a rotation in the xy frame (e.g. iono-
spheric Faraday rotation, or parallactic angle) is represented by
a diagonal matrix in the rl frame. If the observed field has no in-
trinsic linear polarization, the B matrix is also diagonal. If a part
of the RIME is known to contain diagonal matrices only, their

product can be evaluated with significant computational savings
(compared to the full 2× 2 matrix regime). On the other hand, if
the instrument is using linear receptors, then receiver gains (G)
should be expressed in the linear frame, lest calibrating them be-
come extremely awkward. We should therefore implement the
RIME somewhat like the above equation, with the appropriate
H matrices inserted as “late” in the chain as possible, so that
only the minimum amount of computation is done for the full
2 × 2 case. This approach is not yet exploited by any existing
software, but perhaps it should be. In particular, the MeqTrees
system (Noordam & Smirnov 2010) automatically optimizes in-
ternal calculations when only diagonal matrices are in play, and
would provide a suitable vehicle for exploring this technique.

Note that the configuration matrix C proposed by Hamaker
et al. (1996), and further discussed by Noordam (1996), plays a
similar role, in that it converts from “antenna frame” to “volt-
age frame”. Here I simply suggest a generalization of this line
of thinking. The RIME allows for an arbitrary mix of coordi-
nate frames, as long as the appropriate conversion matrices are
inserted in their rightful places16.

7. Errors and controversies

For all its elegance, even the simplest version of the RIME (e.g.
as formulated in Sect. 1.3) contains two points of confusion and
controversy. The first has to do with the sign of the iV term, and
the second with the factors of 2 in the definition of Vpq and B.

7.1. Sign of Stokes V

The sign of Stokes V has been a perennial source of confu-
sion. The IAU (1973) definition specifies that V is positive
for right-hand circular polarization, but the literature is littered
with papers adopting the opposite convention. Fortunately, ma-
jor software packages such as AIPS and MIRIAD follow the
IAU definition (though this has not always been the case for
their early versions). As for the iV term in the RIME, Papers
I and II of the original series (Hamaker et al. 1996; Sault et al.
1996) used the sign convention of Eq. (7). In Paper III of the
series, Hamaker & Bregman (1996) then discussed the issue in
detail, and showed that this convention is “correct” in the sense
of following from the IAU definitions for Stokes V and standard
coordinate systems. However, in Paper IV, Hamaker (2000) then
used the opposite sign convention! In Paper V, Hamaker (2006)
noted the inconsistency, yet persisted in using the opposite con-
vention.

For this series, I adopt the correct sign convention of the orig-
inal RIME Papers I through III, as per Eq. (7).

In practice, few radio astronomers concern themselves with
circular polarisation, which is perhaps why the confusion has
been allowed to fester. Unfortunately, this also means that in the
rare cases when sign of V is important, it must be fastidiously
checked each time!

7.2. Factors of 2, or what is the unit response of an ideal
interferometer?

A far more insidious issue is the factor of 2 in Eqs. (4) and (7).
This has been the subject of a long-standing controversy both in
the literature and in software. The definition of Stokes I in terms

16 Nor should we restrict our thinking to just the xy and rl frames. It
could well be that the RIME of a future instrument will turn out to have
a particularly elegant form in some other coordinate basis.
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of the complex amplitudes of the electric field is quite unambigu-
ous (Thompson et al. 2001; Born & Wolf 1964). In particular:

I = 〈|ex|2〉 + 〈|ey|2〉, Q = 〈|ex|2〉 − 〈|ey|2〉.
This implies that a unit source of I = 1,Q = U = V = 0 corre-
sponds to complex amplitudes of 〈|ex|2〉 = 〈|ey|2〉 = 1/2. What is
less clear is how to relate this to the outputs of a correlator. That
is, given an ideal interferometer and a unit source at the phase
centre, what visibility matrix Vpq should we expect to see? (In
other words, what is the gain factor of an ideal interferometer?)
This is something for which no unambiguous definition exists.
Historically, two conventions have emerged:

Convention-1/2. Unity correlations correspond to unity com-
plex amplitudes, so a 1 Jy source produces correlations of 1/2
each:

Vpq =

( 〈|ex|2〉 0
0 〈|ey|2〉

)
=

1
2

(
1 0
0 1

)
.

Convention-1. Unity correlations correspond to unity Stokes I:

Vpq = 2

( 〈|ex|2〉 0
0 〈|ex|2〉

)
=

(
1 0
0 1

)
.

Convention-1/2 is somewhat more pleasing to the purists, as it re-
tains standard physical units for visibilities. This is the conven-
tion used throughout the RIME papers, beginning with Hamaker
et al. (1996), and also originally adopted in the MeqTrees sys-
tem (Noordam & Smirnov 2010). However, Convention-1 is by
far the more widespread, having been adopted by AIPS and other
software systems, which has caused it to become entrenched in
the minds of most radio astronomers.

The first edition of what is effectively the main reference
work of radio interferometry, Thompson et al. (1986), had
a factor of 1/2 in the equations for interferometer response
(Eq. (4.46)), but omitted it in Table 4.47. (I conjecture that this
table may in fact be the origin of Convention-1!) By the time
of the second edition, Convention-1 was already widespread,
and the authors responded by dropping the factor of 1/2 after
Eq. (4.29), noting that it was “omitted and considered to be sub-
sumed within the overall gain factor.” (Thompson et al. 2001, see
p. 102). For better or for worse, this has irrevocably consecrated
Convention-1 as the one to follow.

Ultimately, flux scales are tied to known calibrator sources,
whose brightnesses are quite unambiguously defined in units of
janskys. This means that in practice, the factor of 2 is indeed
quietly subsumed into the gain calibration. Problems arise when
data is moved between software packages that follow different
conventions. For example, data calibrated with MeqTrees (for-
merly using Convention-1/2) is kept in a Measurement Set (MS),
yet the only tool available for making images from an MS is
the AIPS++/CASA imager (Convention-1). This has often re-
sulted in images with fluxes that were off by a factor of 2, so the
MeqTrees project has recently switched to Convention-1.

In this paper, I have taken the difficult decision of breaking
with the original formulations, and recasting the RIME using
Convention-1. There remains the question of where to inject
the requisite factor of 2. I have decided to do it “on the inside”,
by dropping the factor of 1/2 from the Hamaker (2000) definition

of the brightness matrix B (Eq. (7)). The alternative was to add
a factor of 2 to the “outside” of the equation. The “inside” ap-
proach appears to have a number of practical advantages:

– B becomes unity for a unit (1 Jy unpolarized) source.
– The coherency of a point source at the phase centre

(Sect. 1.7) becomes equivalent to its brightness (and not one-
half of its brightness).

– In the “onion” form of the ME (Eq. (9)), each successive
layer of the onion corresponds to measurable visibilities,
without needing to carry an explicit factor of 2 around.

8. Conclusions

Since its original formulation by Hamaker et al. (1996), the radio
interferometer measurement equation (RIME) has provided the
mathematical underpinnings for novel calibration methods and
algorithms. Besides its explanatory power, the RIME formalism
can be wonderfully simple and intuitive; this fact has become
somewhat obscured by the many different directions that it has
been taken in. Several authors have developed approaches to the
DDE problem based on the RIME, using different (but mathe-
matically equivalent) versions of the formalism. This paper has
attempted to reformulate these using one consistent 2 × 2 for-
malism, in preparation for follow-up papers (II and III) that will
put it to work. Finally, a number of misunderstandings and con-
troversies has inevitably accrued themselves to the RIME over
the years. Some of these have been addressed here. It is hoped
that this paper has gone some way to making the RIME simple
again.
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