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General 
This general purpose C++ library implements beamforming and RFI mitigation in the sense of interferer 

suppression and signal recovery. Library functions can be applied to short time integrated cross-

correlation data (STI data) of multi-pixel receivers, focal plane or phased arrays and interferometers.  

The library was primarily developed for radio astronomy applications under FP7 ALBiUS. It is publicly 

released in the hope it may prove to be useful in other applications as well. Accelerated BLAS/LAPACK 

linear algebra routines are used for performance. Single-core throughput on a Xeon E5430 with 64 

antenna element data, double precision and complex arithmetic ranges from 100 to 9000 channels per 

second, depending on the type of RFI mitigation and beamforming. 
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Introduction 
Radio frequency interference (RFI) in low frequency bands is a growing concern in radio astronomy. 

Research in Digital Signal Processing and Advanced Radio Communications has produced a wealth of 

interference mitigation methods that are widely used in military and commercial communication 

technology and are usually tailored for certain scenarios and radio environments.  

Mitigation methods have found their way into radio astronomy, too. Thanks to advances in the 

performance of FPGAs and computers, digital instead of analog processing approaches have gained 

entrance into the early layers of radio astronomic data capture and data preprocessing. Here they 

improve the data quality at varying degrees of success. 

For cases where signal recovery is not thought to be possible, there exist statistical methods (flaggers) 

that analyze time series of multi-channel data and identify parts affected by interference. Data of 

identified parts is then discarded during post-processing. 

On the other hand, there exist also methods that aim to recover as much of the desired celestial signal as 

possible. Promising methods in radio astronomy include real-time adaptive filtering, adaptive 

beamforming, spatial filtering, subtraction of actual or reconstructed interfering signals with the help of 

reference antennas, and filtering of complex visibilities amongst others.  

This C++ library together with Matlab reference source code is intended for certain observation setups 

that provide the required additional information which allows recovery of the desired signal to a higher 

degree, while not harming the data in those bands that are free of interference.  

General requirements and a software details as well as results are given below. 

C++ Library Requirements and Compiling 
Source code is provided with this package. Code is maintained in the DiFX SVN repository (svn co 

https://svn.atnf.csiro.au/difx) and is in the ./libraries/beamformer/trunk/ path. 

The C++ library has been tested to compile at least under Linux and GCC 4.4.4 and GCC 4.5.1. You also 

need autoconf, automake, libtool. 

For good performance, linear algebra operations use standard accelerated linear algebra. You need to 

install Armadillo C++ Linear Algebra Library version 2.2.1 or later (http://arma.sourceforge.net). 

Armadillo supports OS X, Windows and Linux and provides compile-time arithmetic expression 

optimizations. It also interfaces to any underlying library that provides standard BLAS/LAPACK interfaces. 

These may be ATLAS, Intel MKL or AMD ACML. Under Linux the Armadillo library requires cmake, blas-

devel, lapack-devel, atlas-devel, boost-devel. You might want to install ATLAS packages that are specific 

for your system, e.g. atlas-sse3 and atlas-sse3-devel instead of the generic atlas-devel. To install 

Armadillo under OS X or Windows please read the Armadillo web site. 

https://svn.atnf.csiro.au/difx
http://arma.sourceforge.net/
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Unpack the C++ beamformer source code package to some directory. You can compile in single instead 

of double precision by editing ./src/BeamformerTypeDefs.h and defining USE_SINGLE_PRECISION. 

To build and install the Beamformer library including example programs: 
$ aclocal ; autoconf ; autoheader ; automake –a 

$ ./configure --prefix=/usr/local 

$ make ; sudo make install 

C++ Library Class Overview 
The library is written in C++ and documented with doxygen tags. All classes and member functions are 

documented both in the source code as well as the doxygen-generated PDF Reference Manual. These 

are useful for lower level details about the library.  

Higher level details of the architecture and the algorithms are described in the current document. A brief 

summary of classes and what they do is found in Table 1.  

The following types of processing are supported, with variations: 

Beamforming 

Create an ArrayElements object to describe antennas and their positions. Create one Beams_t structure 
with electrical pointing angles of all desired beams.     

For each new multi-channel Covariance data loaded from file or memory, use a BeamformerWeights 
object to compute new element weights using classic beamformer, MVDR or Cox RB-MVDR. 

Computed weights can be loaded into e.g. an external GPU beamformer. If raw input data that formed 
covariances was buffered, weights can be applied to their own data. This reduces error. 

 

Nulling without RFI reference antennas 

Load Covariance data, pass to a Decomposition, run RFI detection and nulling using a 
DecompositionModifier. This modifies data in the Decomposition object. The recompose() methods allow 
to generate a final cleaned Covariance. 

Clean covariances can be useful as the input into external UV plane imaging software. 

 

RFI Templating with reference antennas 

Load Covariance data, pass it to a CovarianceModifier to run RFI Template generation and subtraction. 

Clean covariances can be useful as the input into external UV plane imaging software. 

 

Example source code is in the ./examples directory. The analysis program is mainly intended for 

debugging and comparing data to Matlab. The benchmark program executes different processing steps 

on a single CPU core and reports the performance. 
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Table 1 - Overview of library classes 

Class Description 

ArrayElements Use this class to describe your focal plane array or antenna array. The class 
stores information on element positions (X,Y,Z) and the properties of each 
element (LCP, RCP polarizations) and its dedicated use (astronomy signals, or 
RFI reference antenna for RFI signals). Can pre-generate positions for uniform 
linear and uniform grid array layouts. 
 
Required by:  
Beamformer (RB-MVDR weight calculation) 
BeamformerWeights (conversion of beam angles into steering vectors) 
CovarianceModifier (RFI templating and subtraction) 

typedef Beams_t 
(BeamformerData.h) 

Used to list the desired electrical beam pointing angle(s). Also the output 
storage of computed (or “manually” edited) steering vectors and beamformer 
weights matching these input beam pointing angles. 
 
Required by: 
BeamformerWeights (conversion of beam angles into steering vectors) 
BeamformerWeights (weight calculation, joint with Covariance input) 

BeamformerWeights Two use cases. First, helps to convert Beams_t  electrical beam angles into 
steering vectors. 
 
Second, provides functions to convert steering vectors and covariance 
matrices or their decompositions into beamformer weights (CBF, MVDR, Cox 
WNGC MVDR, other methods). Weights are stored back into Beams_t. 

Covariance Stores time-integrated covariance matrix data. Data can be single or multi-
channel. It can be cross-correlation data (in which case it needs to be 
frequency domain) or covariance data (in which case it needs to be time-
domain with contributing signals X having expectation value E<X>=0). 
 
Required by: 
CovarianceModifier (changes to covariance data) 
Decomposition (decompositions or recompositions of covariance data) 

CovarianceModifier Applies non-toxic RFI mitigation algorithms to a Covariance object. Currently it 
implements two types of RFI Template subtraction. See van der Veen [VE04] 
and Briggs [BRI00]. 
 
Requires that: 
1) covariance data was observed with Nref ≥1 reference antennas 
2) must have Nref ≥ NRFI/channel, otherwise system underdetermined 
3) RFI ≥10dB stronger in reference antennas; mean of RFI autocorrelations 10 
larger than times mean of other autocorrelations. 

DecompositionAnalyzer Extracts features from a covariance Decomposition. Currently returns number 
of RFI signals in a channel, estimated from eigenvalues with MDL or AIC 
information criteria or 3-sigma thresholding. (Direction of arrival DOA 
estimation with MUSIC in C++ is TODO.) 

Decomposition Base class for decomposing a 2D covariance matrix or a 3D multi-channel 
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Covariance object. Can also generate a new Covariance from (possibly 
modified) decomposition data. 
 
Child classes: SVDecomposition, EVDecomposition, QRDecomposition 
 
Required by: 
DecompositionAnalyzer (feature extraction, number of RFI, RFI DOA) 
DecompositionModifier (nulling) 

DecompositionModifier Applies automated changes to a Decomposition object. Currently editing steps 
are RFI interferer estimation and nulling (subspace method). 
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C++ Library and Multithreading 
Multi-threading is not directly implemented in this C++ library. Basic time-division parallelism is of course 

possible, if you handle Covariances of different short time integration intervals on different CPU cores. 

However, data channel-division parallelism is also possible. All data processing in the library is memory-

in-place. Channels are processed one at a time. Those library functions that have high arithmetic cost, 

such as covariance data decomposition, can be invoked for just a sub-range of frequency channels. 

You can thus use Parallel For on for example CovarianceDecomposition::decompose() and loop it over 

non-overlapping channel ranges, to utilize all CPU cores. 

Parallel For can be found for example in the Intel Thread Building Blocks (parallel_for),  OS X Grand 

Central Dispatch (dispatch_apply), OpenMP (#pragma omp parallel for), or Boost.Thread parallel for. 

C++ Library Performance 
The individual RFI mitigation and beamforming functions were tested in a sequence typical for normal 

usage in a real-time or off-line astronomic signal processing pipeline. There library source code comes 

together with a program called benchmark under the examples. This program was run on a single core of 

an Intel E5430 2.66 GHz CPU. The double-precision performance is in Table 2 below. 

Table 2 – Throughput of full processing using double precision complex arithmetic, 64 phased array elements, synthetic and 
APERTIF 71-channel 64x64-size covariance data in memory, running on 1 core of a dual-processor Intel Xeon E5430 system 
(12MB L2, 2.66 GHz, quad core). 

# Armadillo with ATLAS, Beamformer compiled ‘-g –O3 -Wall’ for double precision (default) 
numactl –physcpubind=0 ./benchmark 

Integrate 64-elem vector into Covariance 80300 channels/sec (better use FPGA or GPU!) 

Decomposition -> recomposition (average) 230 channels/sec 

SVD -> RFI detect -> null -> recomposition 150 channels/sec 

EVD -> RFI detect -> null -> recomposition 230 channels/sec 

1-RFI/ch, 2-reference Template subtraction 5420 channels/sec 

2-RFI/ch, 2-reference Template subtraction 9100 channels/sec 

64-beam classical beamformer 3600 channels/sec 

64-beam MVDR (Cox b=1.0) 290 channels/sec 

64-beam RB-MVDR (Cox b=1.0+1e-4) 290 channels/sec 

 

Computation can be spread across available CPU cores using a ParallelFor loop. Performance of the 

processing steps will scale linearly. It is also possible to recompile the C++ library to use 32-bit single 

precision floating point in all vector and matrix arithmetic. The single precision performance is shown in 

Table 3 below. 
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Table 3 - Throughput of full processing using single precision complex arithmetic, 64 phased array elements, synthetic and 
APERTIF 71-channel 64x64-size covariance data in memory, running on 1 core of a dual-processor Intel Xeon E5430 system 
(12MB L2, 2.66 GHz, quad core). 

# Armadillo with ATLAS, Beamformer compiled ‘-g –O3 –Wall -DUSE_SINGLE_PRECISION=1’ 
numactl –physcpubind=0 ./benchmark 

Integrate 64-elem vector into Covariance 156000 channels/sec (better use FPGA or GPU!) 

Decomposition -> recomposition (average) 270 channels/sec 

SVD -> RFI detect -> null -> recomposition 190 channels/sec 

EVD -> RFI detect -> null -> recomposition 260 channels/sec 

1-RFI/ch, 2-reference Template subtraction 8700 channels/sec 

2-RFI/ch, 2-reference Template subtraction 21900 channels/sec 

64-beam classical beamformer 5850 channels/sec 

64-beam MVDR (Cox b=1.0) 390 channels/sec 

64-beam RB-MVDR (Cox b=1.0+1e-4) 360 channels/sec 
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Matlab Script Overview 
The source code package includes MathWorks Matlab scripts in addition to C++ source code. The Matlab 

scripts are essentially the reference for the numerical parts of the C++ library. The scripts are included to 

help you test new algorithms visually. 

Matlab file(s) Function 

subspcrfi Test program that calls some of the functions below 

subspcrfi_A Generates array steering matrix in one direction for all channels. 

subspcrfi_AICrank 
subspcrfi_MDLrank 

Estimate the number of independent components from a list of matrix 
eigenvalues; estimates the rank of the original covariance matrix. See 
information theory text books or Wax-Kailath [WK85]. 

subspcrfi_MVDR Beamformer weights from covariance data and a set of beams. Classical, 
MVDR and RB-MVDR Cox Projection beamforming. For Cox see [CZO87]. 

subspcrfi_RtoUV Basic UV gridding. Converts covariance matrix and antenna element 
positions into UV plane matrix. 

subspcrfi_SNR Beamformer weights from Ronsource – Roffsource calibration covariances, 
Maximum SNR weights into steering direction, or conjugate field match. 

subspcrfi_doa_MUSIC Attempts RFI 3D DOA estimation from decomposed covariance, antenna 
element positions using the MUSIC algorithm. 

subspcrfi_elemXYZ Generates antenna positions (x,y,z) in uniform grid array in (x,y) plane. 

subspcrfi_getEV Eigenvalue decomposition of covariance matrices for all channels. 

subspcrfi_getNoises Estimates antenna noise from covariance matrices. 
Uses estimator described for example in Ippoliti [IPP05]. 

subspcrfi_loadRxxFile Read multi-channel complex covariance data from a file that the C++ 
Beamformer library Covariance::store() function can generate. 

subspcrfi_modelgen Synthetic covariance data generator. Single-channel, takes a spatial 
array layout, noise powers, list of signals (their powers and angles) and 
outputs covariance. Signals are assumed to be orthogonal and 
multipathing delays longer than integration time. 

subspcrfi_modelgen2 Synthetic covariance data generator that uses RFI reference antennas. 
Identical to subspcrfi_modelgen, but specified antennas see RFI signals 
at higher gain and celestial sources at low to zero gain. Signals are 
assumed to be orthogonal and multipathing delays longer than 
integration time. 

subspcrfi_nulling Interferer nulling. Takes EVD decomposed multi-channel covariance 
data, estimates interferers, replaces dominant eigenvalues with mean of 
noise-space eigenvalues. Assembles “cleaned” output covariance. Uses 
standard methods, for gentle introduction see Briggs-Kocz [BK05]. 

subspcrfi_plotArrayResponse Beamformer weights are converted into an array response over -
90..90deg phi/theta angles. The array radiation pattern is plotted in 3D. 

subspcrfi_plotEVspec Plot multi-channel eigenvalue spectrum. Overlays N most dominant 
eigenvalues into the same plot. 

subspcrfi_steer Similar to subspcrfi_A but computes steering for only one frequency. 

subspcrfi_subtraction Reference antenna method. Corrects array covariance data by 
subtracting RFI signal contributions, estimated by covariance between 
reference antennas and array elements. 
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Uses methods from van der Veen [VE04] and Briggs [BRI00]. 

subspcrfi_test_subtraction Test program for the subtraction methods. 

subspcrfi_writeRxxFile Write multi-channel complex valued covariance data into a file that the 
C++ Beamformer library can import. 

Requirements on the Antenna Array data 
Below are the (reasonable) requirements the input data must be meet for proper operation of the RFI 

mitigation and analysis algorithms. The Matlab sources are quite flexible. The C++ library however 

expects certain additional Covariance matrix layout constraints to work efficiently.  

Here are the points to consider while forming the Covariance input and earlier, while planning the 

technical aspects of an astronomic observation: 

1. “Covariances” between array elements should be formed and time-integrated over short time 

intervals (STI: 1ms<Tint<10ms). The choice of Tint is a balance between increased noise at very 

short Tint on one hand, and less effective RFI mitigation at the other due to multipathing and RFI 

variability at very long Tint.  

2. Time-integrated covariances should best be formed on FPGA (fixed-point) or GPU (single 

precision floating point) for CPU speed and I/O limit reasons. 

3. If “Covariances” are cross-correlations, the matrices must contain frequency domain data. 

4. If “Covariances” are time-domain covariances, the matrices must contain time domain. Signals of 

all contributing antennas need to have zero mean (E[X] = 0). 

5. RFI reference antennas may be used. In this case, full covariances between reference antennas 

and array antennas need to be formed. While giving indices out to all the antennas, the 

reference antennas should have the lowest indices. That is, reference antenna data should be in 

the top left corner of the covariance matrices. 

6. Channelizing antenna signals into a large number of narrow frequency channels may be desirable 

from an RFI perspective, if narrower channels reduce the likelihood that any given channel will 

contain more than just one RFI source. 
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Figure 1 – Suggested processing configuration. Figure is re-used from van der Veen et al. [VE04]. 
Mid block: All signal sources are channelized (FFT), channel covariances (X) are short-term integrated ( ) into matrices Rf,k. 

Right block: matrices may be processed in the C++ library (RFI reference subtraction, spatial filtering e.g. Nulling) before long 
term integration, or C++ library can update RFI-nulling beam weights (beamf. calc). Left: signal sources and RFI reference 
signals.  

An example telescope configuration can be seen in Figure 1 by van der Veen et al. They used the phased 

array as an RFI reference “antenna”, with beams steered towards RFI signals. The telescope array  

Data processing in Figure 1 consists of cross-correlation matrices (“covariances”) from several FFT 

channels (subbands) being formed in FX correlator style. Cross-correlations are time integrated over 

some short time interval (STI). These STI covariance estimates can be further processed with for example 

this C++ Beamformer library, outputting new beamformer weights or modified covariance data that 

went through RFI mitigation steps. The cleaned STI covariance estimates are then further time-

integrated according to observer wishes. 

Details on Subspace Methods 
The C++ library and Matlab code provide decompositions of the Hermitian array covariance matrix 

estimate (   ) and has methods for interferer nulling. Nulling is based on partitioning of the eigenspaces 

of the matrix decomposition into interferer and noise subspaces. Below is a very condensed summary of 

the method. We start with a receiver array that has Nant elements and a single narrow-band frequency 

channel. The time snapshot of all Nant real-valued or complex-valued signals from the array is combined 

into a signal vector     , 

                                          (1) 

The true array covariance or cross-correlation matrix     is estimated by     which forms the average of 

signal cross-correlations over a short time range that consists of M signal vector snapshots, 

          
 

 
                    

          (2) 
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where x* denotes the complex conjugate transpose.     is a Hermitian conjugate symmetric (Nant x Nant) 

matrix and is non-singular when enough snapshots are integrated (M > Nant). Covariance data passed to 

the C++ library must be data integrated by M > Nant.  This may be problematic in pulsar observations at 

very short timescales with a large number of antennas. 

For short integration times, with no RFI present, and with a celestial source signal power less than the 

array element noise power   
 , the    (t) estimate is close to the cross-correlation of an independent 

identically distributed (i.i.d.) random variables process that has Nant variables. In this case     is the 

cross-correlation of white noise and     has full rank and is well-conditioned. 

Now we introduce RFI interferers. First we make the reasonable assumption that the astronomic, 

interferer and array noise signals are mutually orthogonal, that is, they are uncorrelated during the M-

snapshot averaging time (the time is assumed to be shorter than any significant multipathing effects of 

the interferer). Now     can be expressed as the linear sum of individual contributions, 

                                          
       (3) 

where   
             is the diagonal matrix of true auto-correlated noise power estimated by      . 

Note that covariance       cannot be reliably estimated a priori. We thus can’t simply subtract       to 

yield an RFI-free version of    . However, when the number of RFI interferers q is less than the total 

number of antennas (q < Nant), the interferer covariance estimate       becomes rank deficient (rank q) 

and ill-conditioned. The eigendecomposition of       has only q non-zero eigenvalues, remaining Nant – q 

eigenvalues are zero. This is the starting point for RFI mitigation. 

To start nulling, the RFI-contaminated Hermitian covariance matrix estimate     is first converted into its 

singular value decomposition (SVD) or its eigenvalue decomposition (EVD), respectively 

                   ; with properties        and S,   diagonal    (4) 

Square matrices S and   contain the eigenvalues of     on their diagonal. Diagonal values are usually 

sorted in non-increasing order with the largest value in the top left (0,0) of the matrix. Matrices U and V 

contain the left-hand and right-hand SVD eigenvectors. Eigenvectors of the EVD are in matrix W.  

SVD and EVD decompositions are closely related. For simplicity we treat only nulling using the EVD 

decomposition. As a practical note, EVD has numerical problems for ill-conditioned Ĉxx. SVD may be 

preferable as it tends to be more stable and accurate when Ĉxx is ill-conditioned. 

The eigenvalue decomposition of     in (3) is, by linearity, 

                     
                   

            
     

    
    

     (5) 

with     eigenvalue submatrix         with q interferer powers and                       

with noise powers. Note all eigenvalues in     are non-negative and real-valued for Hermitian    . 
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Applying the earlier assumption that astronomic source noise power is lower than the antenna noise 

(  
    

   and that each antenna sees an interferer     
                then the diagonal 

eigenvalue submatrices     (from interferer space) and     (from noise space) are 

         

    
      

   
   
        

        
 
  containing interferer noise powers     

  

         

    
   

   
           

 
  containing only antenna noise powers    (6) 

To get an RFI-free estimate                
  using a modified eigenvalue matrix     , the entire 

interferer submatrix      could be set to        (“Nulling”). However, this ignores the     
  

contribution in (6)     
      

  and biases      . In practice a better approach is to “null” with an 

estimate of noise space eigenvalues found in    , and fill the diagonal of       using either 

                                     or                                     (7) 

Median is more robust. The same eigenvalue replacement can be applied to SVD decompositions, too, to 

first create a “nulled” singular value matrix     and then form the RFI-free estimate                
  . 

The number of largest eigenvalues or singular values to null, i.e. the number of interferers   , may be 

estimated using Minimum Descriptor Length (Rissanen 1978) or other information criteria applied to a 

list of eigenvalues. For the log likelihood of MDL(k) we use a ratio of geometric and arithmetic means. 

             
            

               (8) 

                        
    

      
   

 

 
      

 

      
    

      

   
 
 

 

 
                   (9) 

The    estimated by MDL is reliable when the interferer to noise ratio (INR)   
    

    is large. The list 

of eigenvalues then has clear outliers. The log likelihood detects the dissimilarity of eigenvalues – 

geometric and arithmetic means are identical only when all eigenvalues take the same value. 

MDL is only one possibility to estimate   . Other options to count eigenvalues that exceed a noise 

eigenvalue threshold and should thus be classified into RFI interferer space are: 1) find eigenvalues that 

exceed three standard deviations from the mean or median, 2) traverse a sorted eigenvalue list in non-

decreasing order and find a point of sufficiently large deviation in say a moving average or simply local 

slope, 3) use some knee point detection method such as “Kneedle”.  

The typical shape of eigenvalues free of RFI and eigenvalues with two RFI interferers are shown in Figure 

2 and Figure 3. The figures also show eigenvalues detected with MDL and 3-sigma. 
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Figure 2 - Eigenvalues of APERTIF covariance data for Virgo A, channel 1 of 71, no RFI present. Array elements 1-59 connected, 
60-64 disconnected, resulting in 5 near zero values. These are removed from the sorted list passed to MDL detection (solid 

green). Points left of vertical line are MDL-detected RFI. Three-sigma thresholding (dashed blue) finds no outlier eigenvalues. 
The final output after median replacement is identical to the input and has replaced no eigenvalues (red dots). 

 

 

Figure 3 - Eigenvalues of APERTIF covariance data for Virgo A, channel 21 of 71, two RFI sources. Input to MDL detection (solid 
green) shows strong knee point at 2

nd
 eigenvalue. The two points on left of vertical line are MDL-detected RFI. Three-sigma 

thresholding (dashed blue) detects only the first eigenvalue. Median replacement assigns median of non-flagged eigenvalues 
to all flagged eigenvalues. Here only first was replaced. Final result of processed eigenvalues (red dots) is later used to 

reconstruct a clean covariance matrix for the frequency channel. 

After estimating q, nulling and reconstructing a clean covariance matrix, the time series of nulled 

covariance matrices         can be fed into long-term time integration for imaging and spectral line 

detection or into pulsar data de-dispersion processing. 

Strongly detected pulsars may need special care in the processing. Pulsars can contribute dominant 

eigenvalues to the EVD or SVD decomposition and they may be identified as RFI and get erased. 

To demonstrate the algorithm, a result of nulling applied with Matlab and also the C++ Beamformer 

library to data from APERTIF is shown in Figure 4.  
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Figure 4 – Eigenspectrum of Virgo A covariances. Derived from 64-element 71-channel raw APERTIF covariance data (Wim van 
Cappellen). AfriStar digital satellite radio RFI around center channels. This EuroStar-family satellite signal adheres to ETSI EN 
302 550-1-3.  Horizontal axis: frequency channels 1 to 71 (1.4830-1.4967 GHz). Vertical axis: overlay of all 64 eigenvalue 
powers, colored red-to-black from largest to smallest eigenvalue. Green curve: median.  Blue curve: mean. 

The number of interferers q that should be nulled via median eigenvalue replacement is estimated with 

MDL and with a 3-sigma threshold. The figure shows one interferer detected in the central channels of 

the 1.4830 - 1.4967 GHz band. It is completely nulled in the processing output show in Figure 5.  

 

Figure 5 - Eigenspectrum of nulled Virgo A covariances. Original 71x64x64 matrices first SVD or EVD decomposed. Interferer 
number per channel auto-estimated with MDL and limited by 3-sigma thresholding. Dominant eigenvalues replaced by 
median of noise space eigenvalues (“nulled”). Nulled matrix decompositions are reconstructed, resulting in clean covariance 
matrices. Cleaned covariance matrices EVD-decomposed a second time to get eigenspectrum for this figure. Vertical axis: 
overlay of all 64 eigenvalue powers, colored red-to-black from largest to smallest eigenvalue. Green curve: median.  Blue 
curve: mean. 

The effect of MDL and 3-sigma RFI nulling on the autocorrelations is shown in Figure 6. ON-source and 

OFF-source data were available. Their difference was used to remove standing wave effects of the WSRT 

dish. Autocorrelations of all 64 elements are plotted along 71 channels.  

Nulling is apparently highly effective in reducing the level of RFI in all elements. Nulling also prominently 

brings out the Virgo A continuum seen in array element 31 in Figure 5. There is a clear processing artifact, 

however. In element 11 near low channels, nulled OFF-source data contains near zeroes. This causes two 

spikes after subtraction from ON-source data. Clearly, nulling is not always 100% effective and a last step 

of data flagging will sometimes be necessary. 
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Figure 6 – Autocorrelations from APERTIF Virgo A covariances. Autocorrelations of 64 elements plotted over 71 channels. Left: 
ON-source minus OFF-source of original data. Right: same for data nulled using MDL and 3sigma thresholding. 

For Figure 7 the Matlab UV gridder (part of Matlab portions of the C++ Beamformer library) was run on 

the APERTIF data, gridding the difference of nulled ON-source and nulled OFF-source covariance 

matrices, excluding autocorrelations. A final crude UV image was constructed by summing together 2D 

Fourier -transformed UV images of all 71 APERTIF data channels. The similarly processed and stacked but 

not RFI-mitigated original data is shown on the left of Figure 7.  

In autocorrelation data, Virgo A is seen by off-center element 31. All APERTIF physical beams are non-

overlapping. As only one element sees Virgo A it can not be imaged. However, nulled data in Figure 7 

reveals a weak point source. It is also present in the original data, but gets masked by RFI in channels 20-

45 if these channels are included in the stacking. The point source resides somewhere beyond the main 

dish and enters APERTIF physical beams through sidelobes. The signal may be caused by the Sun or by 

wide-band interference from the WSRT control building. 



C++ Beamformer Library with RFI Mitigation – Version 0.1.0                                   Page 16 
 

 

Figure 7 – Imaged covariances after UV gridding, 2D FFT transform and stacking channels 1 to 71. Image FOV approximately 
1 rad. Left: ON-source minus OFF-source difference imaged from original data. Right: same for nulled data. Nulling reveals 

point source at right image edge. This is likely wide-band RFI entering APERTIF from around the WSRT dish edge. Main dish 
subtends 0.96 rad, WSRT has f/D=0.35, D=25m. The point source is seen only in the difference, not in separately imaged 

ON-source or OFF-source data. 

The next three figures show the results of nulling synthetic data. Figure 10 plots a raw RFI-contaminated 

covariance of a single-channel 64-element array. The array sees two point source interferers and one 

faint astronomic point source. The RFI-contaminated data of Figure 10 is UV imaged in Figure 8. EVD-

based nulling results in cleaned covariance      which is UV imaged in Figure 9. Both interferers have 

been removed while the astronomic point source (and array interference pattern) has been retained. 

The astronomic point source has identical magnitude as in a completely RFI-free model. 

 

 

Figure 8 – Image of UV plane of synthetic data. Array is a 64-antenna uniform grid array.  
Element covariances contain two strong RFI point sources and one weak point source (INR=10

3
). 



C++ Beamformer Library with RFI Mitigation – Version 0.1.0                                   Page 17 
 

 

Figure 9 – Image of UV plane, after nulling has been applied to the underlying  
covariance data of Figure 8. Both RFI sources have been fully mitigated. 

 

Figure 10 – Magnitude plot of synthetic data from 64x64–element covariance matrix. Array is a 64-element uniform grid array 
organized as 8*8. Element covariances contain two strong RFI point sources and one weak point source (INR=10

3
).  Periodicity 

stems from the square grid (8*8) spatial element layout that is plotted linearly. 

Details on Adaptive Beamforming 
Beamforming is essentially an adaptive filter process. There is a wealth of algorithms with varying 

computational complexity. Each algorithm optimal for some specific set of constraints. An extremely 

comprehensive introduction is S. Werners PhD thesis [WE02].  

Beamforming produces a set of complex weights                            that phase-shifts 

and combines array element signals                                 such that the weighted sum  

            is a spatial filter with spatial band pass towards a specific direction of an incoming plane 

wave with wave vector k. By modifying weights, the direction of the maximum response and the band 

pass steepness can be shifted. Deep nulls (filter zeroes) can be placed into directions of interfering plane 

waves, quite equivalent to notch filters. Stop band ripple caused by a steep band pass and the finite 

number of array elements (spatial samples) is equivalent to electrical beam sidelobes that appear into 

often unwanted directions. This allows signals other than the targeted celestial source to leak in. 
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Naturally, one can form any number of beams         
                   from the same 

array signal vector    ), allowing the array to look into many directions. 

Non-adaptive beamforming simply shifts the phases of the      array signals vector to counteract the 

wave vector phase shifts of the desired electrical beam steering direction at all element positions. For a 

2D array this corresponds to electrically tilting the array plane to align with the incoming plane wave. The 

beam steering    for beam b is 

                                           ;    
  

 
                                      (1) 

with array element positions       and wave vector    of the desired electrical beam direction    .  

From the above, non-adaptive weights are      
    

For adaptive beamforming, the weights can be computed from array covariance data estimates      The 

weights for maximum power response (minimum mean square error between and actual signal) can be 

computed as  

                             (2) 

Maximum variance minimum distortion beamformer (MVDR, also called Capon Beamformer) weights are 

derived from the generic linearly-constrained minimum variance (LCMV) conditions by additionally 

requiring that        . Optimal weights are 

              
    

    

  
     

    
           (3) 

MVDR is sensitive to main dish deformations and pointing errors in array elements. Uncertainties in 

element look directions lead to worse interferer suppression, and if steering angles don’t exactly match 

the celestial source direction, the source tends to get suppressed in the beam output signal. Widening 

the electrical beam angle (i.e. wider spatial band pass) allows a more Robust MVDR (RB-MVDR). One 

option is to compute optimal MVDR weights using the original      but with additive white noise 

               (WNGC white noise gain constraint). This also makes      less likely to be non-invertible, 

considering the inversion required for (3). 

In the C++ beamformer library, Robust MVDR (RB-MVDR) is implemented as Cox Projection WNGC. It 

first computes        , then extends it in a direction orthogonal to the steering    by a factor  . 

            
       

   

    
 

  

    
             

       
   

    
 

  

    
    (4) 

The choice of   depends on the array. In (4) the      is the L2 norm of the vector (Euclidean distance) to 

normalize    into a unit vector. For     the        weights are identical to MVDR. With      a 

spherical error constraint increases around the exact steering, giving a wider beam i.e. wider bandpass.  

All above beamformer weight updates, when refreshed at long time intervals, create an undesired 

“pattern rumble”. Rumble happens for fast non-stationary interference. It is also caused by weight jitter 
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associated with      estimation errors. Rumble leads to gain fluctuations and reduces stable system 

integration time and thus decreases sensitivity towards celestial sources. In very small compact arrays (7-

beam, 11-beam) this is problematic. Larger arrays are affected less. 

Recursive update approaches are possible, they reduce rumble by adapting beamformer weights more 

smoothly. However, they require either slowly changing interferers or shorter (but then noisier) 

covariance matrix estimates. 

Due to pattern rumble, adaptive beamforming should be used only in compact arrays that have a large 

number of elements (for example >20). 

Details on Reference Signal Subtraction 
When RFI is captured with low-gain reference antennas that are insensitive to the celestial source, 

interference can be subtracted nontoxicly from array STI covariance data in a post-correlation step. 

Compared to its time domain counterpart, adaptive filtering, this method leaves original array signals 

untouched. Neither does it suffer from pattern rumble. The memory requirements are smaller and 

computations are also less involved, though complexity is still similar and lower bounded by Ω(Nant
2).  

RFI reference signals have to be cross-correlated against all array elements. This increases the covariance 

matrix size. It may not always be possible to keep matrix dimensions a convenient power of two. 

RFI subtraction from array data is described in van der Veen et al. [VE04] and they present the solution 

for the generic case. A special case with two reference antennas and at most one interferer per channel 

is covered in Briggs et al. [BRI00].  

We denote signal vector      with Nant signals in total, the first n from RFI reference antennas, by 

                                                  (1) 

Reference antennas see interferers      and noise     . The celestial source      is seen only by array 

elements. Noise is assumed to be i.i.d. for reference antennas. Likewise for array elements. We assume p 

stationary interferers that result in signals      and      for the two antenna types. Antenna signals 

         
                              

                                       

       (2) 

in vector form are 

                       
            

         
  

 
            

           
  

 

 

 

                                    (3) 

The short-term integrated covariance estimate 

          
 

 
                    

          (4) 
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with uncorrelated noise and variances     
  and     

 , after omitting the time dependence, becomes 

                 
      

      
   

        
      

          
 

        
              

      
  
   (5) 

Here                 ,                         and                       . A 

clean estimate of celestial source and noise covariance          
   can be formed by subtracting an 

estimate of         
  from    .  

The interference term of the covariance matrix (5) is 

       
        

             
             

        
                    

                   
    (6) 

The submatrix dimensions are noted for convenience. Now when the number of interferers       

and when          has full rank (i.e. interferers are uncorrelated), then         
  can be expanded 

             
          

          
  

  
        

          
         (7) 

This last term can be subtracted to yield a cleaned covariance estimate      : 

          
      

                
      

  , alternatively         
  
              

      
    (8) 

The three submatrices that contain reference antenna contributions may be set to zero.  

Note the last term in (7) is only approximately equal to the first because of the autocorrelated noise 

term in             
      

          
    . Further, due to the noise,     does not become singular 

in the interference-free scenario    . The noise then adds a small bias to the (non-zero) correction.  

The C++ Beamformer library compares means of the reference antenna autocorrelations and the array 

autocorrelations. It does not do the          
       subtraction unless the reference mean 

autocorrelation is 10 times higher than the array mean, which, assuming     
      

 , indicates that a 

higher-INR interference is present (   ) and subtraction is warranted. 

 

There is another but specialized method for RFI template subtraction by Briggs et al. [BRI00] that does 

not suffer from the above bias. It requires there are     reference antennas and at most     

interferers. The method avoids the     
    noise bias. The corrected covariance value for each           is 

              
        

       

        
 

        
        

        

              
        

         (9)   

Here     ,      are the indices of the two reference antennas. The parameter      helps numerical 

stability in those frequency channels where there is no RFI. In those channels, reference antenna cross-
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correlation          would be close to zero. Choices for      can be a small constant or the square of 

noise in          after calibration. 

Example output of the above two subtraction methods (generic and special case) is demonstrated in the 

figures below. Overall subtraction seems very effective, at least in the synthetic environment setup. An 

example of subtraction effectiveness with APERTIF data and a reference antenna setup is planned later. 

The special case for a single RFI signal and two reference antennas is in Figure 10 to Figure 14. The 

general case with two and three RFI signals (combined with two and three reference antennas) is 

demonstrated in Figure 15 to Figure 18.  

To see how both methods affect the covariance data if no interference is present, the error between 

subtraction-cleaned covariances and the original (RFI-free) covariance is plotted Figure 19. The signal 

power threshold check (comparison of reference and array autocorrelation means) was disabled, forcing 

the subtraction algorithms to run. The resulting difference in cleaned and true clean covariance data is 

zero. Varying the levels of element noise powers and spurious cross-correlated noise in relation to the 

astronomic signal results in similar zero or practically zero error. 

With RFI present, the noise-induced bias of the generic algorithm becomes clear. Figure 20 compares the 

case with two reference antennas and one RFI (Nref=2, Nrfi=2). The peak error is about a factor 10-5 

smaller in the special method. The error in the generic method improves when there are less interferers 

than reference antennas (Figure 21). 
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Figure 11 – UV image of synthetic data. Phased array 8*8, 

Nref=2 antennas at diagonal corners, relative gain towards RFI 
g=10

3
. Signals: 1 strong RFI, 1 weak sky point source. 

 
Figure 12 – UV image after RFI Nulling. Covariance underlying 
Figure 11 was nulled, excluding RFI reference antenna data. 

 
 

 
Figure 13 – UV image after specialized RFI Subtraction (1 

RFI/channel, Nref=2). Practically identical results with g=10
1
 … 

10
3
 relative gains towards RFI. Result comparable to Nulling. 

 

 
Figure 14 – Delta UV image at two RFI antenna gains. 

Difference between RFI-Subtracted covariance UV image and 
a reference RFI-free model UV image. Top: RFI antenna gain 
10

1
, vertical scale 0 to 9·10

-11
. Bottom: RFI gain 10

3
, vertical 

scale 0 to 13·10
-15

. 
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Figure 15 - UV image of synthetic data. Phased array 8*8, 

Nref=2 antennas at diagonal corners, relative gain towards RFI 
g=10. Signals: 2 strong RFI, 1 weak sky point source. 

 

 
Figure 16 – UV image after RFI Subtraction (generic 2 

RFI/channel, Nref=2). Ref antenna gain towards RFI g=10. 

 
Figure 17 - UV image of synthetic data. Phased array 8*8, 

Nref=3 antennas near array corners, relative gain towards RFI 
g=10. Signals: 3 strong RFI, 1 weak sky point source. 

 
Figure 18 - UV image after RFI Subtraction (generic 3 

RFI/channel, Nref=3). Ref antenna gain towards RFI g=10. 

 

 
Figure 19 – Absolute difference between Subtraction cleaned covariance and an RFI-free model covariance. Two reference 

antennas (Nref=2), no RF interference (Nrfi=0). Left: generic Subtraction method. Right: specialized Subtraction method. 
Data is zero to working precision even when pre-subtraction interferer level checking is bypassed.  
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Figure 20 - Absolute difference between Subtraction cleaned covariance and an RFI-free model covariance. Two reference 

antennas and one RFI (Nref=2, Nrfi=2). Left: generic Subtraction, scale 10
-7

. Right: special Subtraction, scale 10
-13

. 

   
Figure 21 - Absolute difference between Subtraction cleaned covariance and an RFI-free model covariance, Nref=3. 
Left: generic Subtraction and two RFI (Nrfi=2), scale 10

-9
. Right: generic Subtraction and three RFI (Nrfi=3), scale 10

-7
. 

 

 

Credits and Future work 
Wim van Cappellen from ASTRON kindly provided the APERTIF 1.49 GHz covariance snapshot (Virgo A 

with prominent AfriStar satellite RFI). This covariance data was used to demonstrate Nulling methods. 

Regarding future work, it may be of interest to consider the Jeffs and Warnick [JW09] findings on 

spectral bias (“spectral scooping”) for narrowband interference. Spectral bias is caused by beamformer 

weights that are calculated from a covariance matrix that is not the exact covariance matrix but an 

estimate. Spectral bias may be of interest mainly for PSD estimation and correction.  

A further TODO might be to integrate functions of this library into AIPS or CASA. For CASA this is 

reasonably straight forward. Non-pretty details of Fortran access to C++ classes would need to be 

handled for AIPS, or AIPS visibility data modified through ParselTongue and the use of Numeric Python as 

well as rewriting the computations into Python form.   However, at the moment it is still unclear how 

CASA or AIPS will support small local arrays or focal plane arrays. Most arrays have their own toolset and 

pipeline. 
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