Proposed phase equation to be used in fringe fitting.

I M Stewart

February 9, 2011

The generic expression for visibilities for a single baseline as a function of frequency ν and time t is

$$
V(\nu, t)=A(\nu, t) \exp (i \phi[\nu, t]),
$$

where A and ϕ are amplitude and phase respectively. If we assume that the contribution due to source structure has been divided out, A will be equal to unity. The phase expression in this case is all that is of interest. It is

$$
\phi(\nu, t)=\phi\left(\nu_{0}, t_{0}\right)+2 \pi \nu \tau(t) .
$$

Here ν_{0} and t_{0} are reference values of these quantities, and τ is the delay offset between signals from the antennas of that baseline at the point at which they are correlated. Note that all frequency-dependent contributions, for example from the ionosphere, have been neglected for the moment. It is also assumed that terms quasi-proportional to time, such as differences between station frequency references, have already been calibrated out.

Since τ is a continuous function of t it is desirable to parameterize it in some way, probably as a weighted sum of basis functions $T_{i}(t)$:

$$
\tau(t) \sim \sum_{i}^{N} \theta_{i} T_{i}(t, t 0) .
$$

An example of this is the Taylor series

$$
\tau(t) \sim \tau(t 0)+(t-t 0) \tau^{\prime}(t 0)+0.5(t-t 0)^{2} \tau^{\prime \prime}(t 0)+
$$

etc.
The method 'solveDelay' proposed for fringe fitting in CASA will produce estimates of the coefficients θ_{i} for some N. It should also output $\phi\left(\nu_{0}, t_{0}\right), \nu_{0}$ and t_{0}.

It is planned that several flavours of solver may follow one another in sequence. In such a chain of solvers, the delay solution obtained by solver $j-1$ is applied to the data sent to solver j. Solver j will then in effect estimate the difference between the true delay function and the τ estimated from solver $j-1$. Thus the values of θ_{i} together with $\phi\left(\nu_{0}, t_{0}\right), \nu_{0}$ and t_{0} obtained by solver $j-1$ should also be sent as input parameters to solver j, so j can add this to its own solution before outputting it.

One could conceive of a delay object which returned either a parameterization or a sequence of delay samples, but for now it is arguably better to 'hard-wire' a simple parameterization, such as Taylor expansion to order 1. In this case each solver will be supplied with t_{j-1}, ϕ_{j-1}, τ_{j-1} and τ_{j-1}^{\prime} (each with a default value of zero) and solve for ϕ_{j}, τ_{j} and τ_{j}^{\prime} in the expression

$$
\phi(\nu, t)=\phi_{j}-\phi_{j-1}+2 \pi \nu\left(\tau_{j}-\tau_{j-1}-\left[t_{j}-t_{j-1}\right] \tau_{j-1}^{\prime}+\left[t-t_{j}\right]\left[\tau_{j}^{\prime}-\tau_{j-1}^{\prime}\right]\right) .
$$

