

Uniboard Correlator Overview

- Data arrives in subbands
- Transpose: full L-R mesh
- Route per-subband to correct input chip
- Input chip: buffer, delay tracking, PFB, fringe rotation
- 2x DDR3 (2x 52.6Gb/s)
- 2x 8GB -> 3.2 s
- Correlator chip: crossand auto correlations,

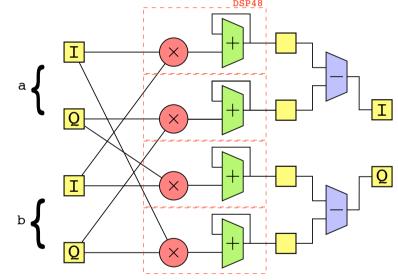
integration, all baselines per chip

• QDR2+ memory: 64.8 Gb/s, 4MB

Bandwidths and bottlenecks

- Data arrives in subbands
- Input chip forms frequency channels (2kHz IMHz)
- Frequency channels can be sent to 4 cor. chips
- $BW_{SUB} \leq 4x BW_{COR}$ (without backplane)
- Correlator chip has \leq 40 Gb/s input BW
- This contains 32 stations, 2 polarisations: 64 streams
 625Mb/s per stream, complex data
- For 64MHz per correlator chip: max. 4 bits
- For 32MHz per correlator chip: max. 9 bits
- Multipliers are 18x18 (or 18x25), only useful >9 bits!
- Run the on-board interconnect at double rate?
- Goal is to get most GMACs out, not be IO limited

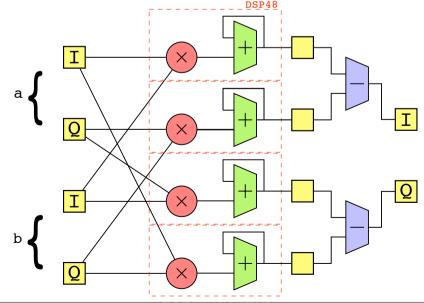
Bitgrowth in FFTs


- FFT wordsize grows by N_{Stages} + I
 - Noise-power diminishes with smaller bandwidth
 - But CW carriers (RFI) will keep the same amplitude
- RFI is local to telescope (we hope)
 - Use bitgrowth at top for RFI immunity
 - Use bitgrowth at bottom for increased precision
 - Ignore bitgrowth for more BW, sensitivity
- Example: 3 bit subbands of 32MHz, 4kHz bins:
 - bitgrowth is 15 bits, FFT output is 18 bits
- At lower frequencies (e.g. L-band) there is more RFI, but less spectrum to sample
- At higher frequencies, go for highest bandwidth
- Bitgrowth means TP growth: TP_{cor} > TP_{inp}

Input chip limitations

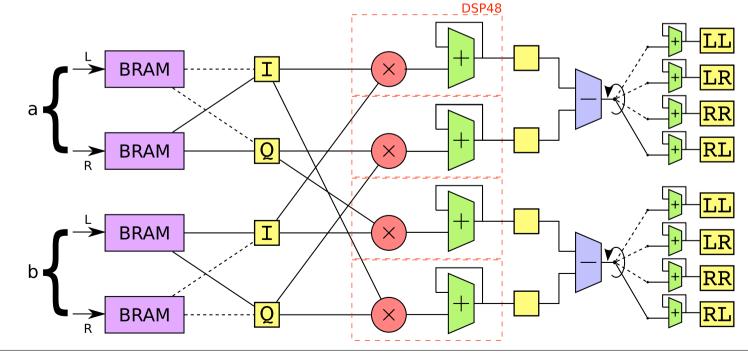
- Must store data in memory
- Network jitter compensation
- Delay tracking
- Best bandwidth so far:Virtex-5 DDR3 400MHz
 - 64 bit dimms 50Gb/s
- Need at least twice that, so 2 memory interfaces
- Still only enough bandwidth to go in & out once
- Combine jitter buffer and delay
 - Data hits memory bottleneck only once
- Ix 32bit DDR3 interface: 1760 slices on V5
 - 5% of a V5 SX240T
- Reduce input data rate? (also allows for bitgrowth)
- Investigate performance on actual usage pattern!

Care and feeding of multipliers

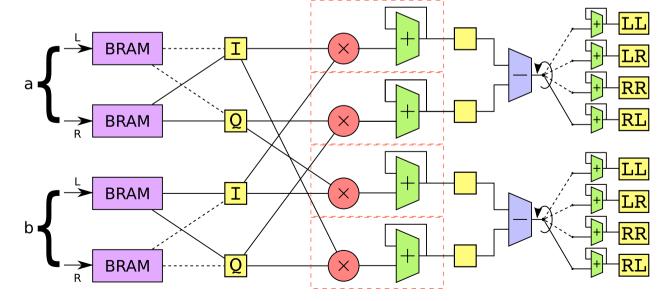

- Use built-in DSP resources (Multiplier/accumulator)
- Make sure these are always busy, always have data
- Use built-in accumulator for integration

- Input chip PFB creates time-ordered spectra
- Re-order to per-subband
- Second transpose needed
- QDR lacks bandwidth
 - Two QDR interfaces?
- Nbr of integrations depends on size of 2nd transpose
- 64 streams, 8 bit (compl) in 4MB: 65k datapoints
 - 32MHz, 64 bins (500kHz): 1024 integrations,
 - 8192 bins (4kHz): 8 integrations.

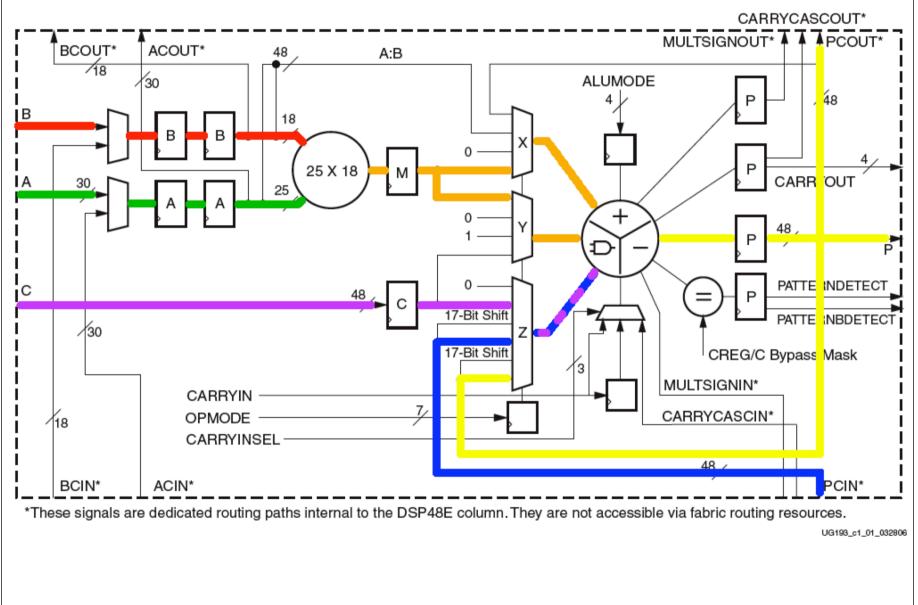
Correlator chip performance

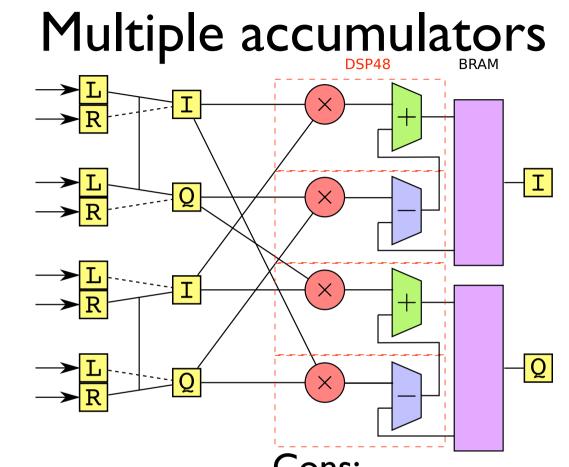

- Process a single band, all stations per correlator unit
- 32 stations, all stokes => 2112 products
- Complex multiplication, 8192 MACs needed
 - Virtex 5 SX240T: 1056 DSP48 (R_M = 7.7x)
 - Stratix 4 SGX230: 1288 18x18 (R_M = 6.4x)
 - Virtex 6 SX475T: 2016 DSP48E (R_M = 4.1x)
- Re-using multipliers means re-issuing data

- $BW_{cor} \times R_M = F_M$
- 400MHz design goal?
 - V5: $BW_{cor} < 50MHz$
 - S4: $BW_{cor} < 60MHz$
 - V6: BW_{cor} < 95MHz


A 31 station correlator?

- Virtex 6 SX475T: 2016 DSP48E, R_{M31}=3.8
- 1064x dual-ported BRAM, 36kbit
 - 18 bits complex data: each BRAM is 1024 points
- 32 telescopes x 2 pol = 64 datastreams
 - 16 x 1024 = 16k points probably too optimistic
- 2nd acc. on-chip (in LUTs) to limit output BW

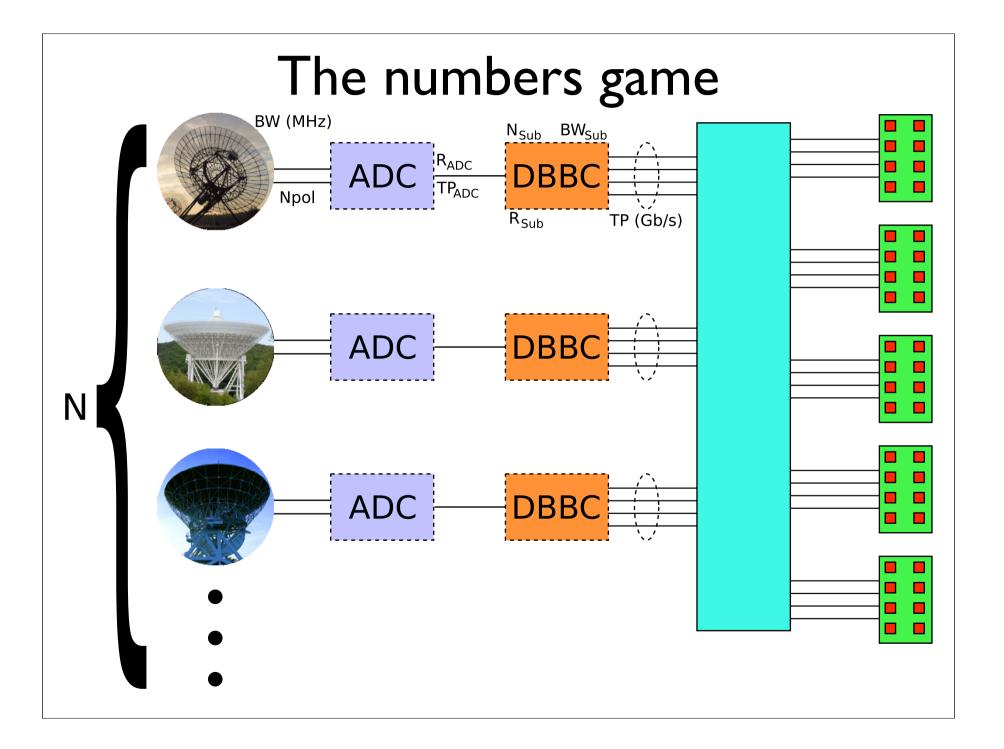



A 31 station correlator?

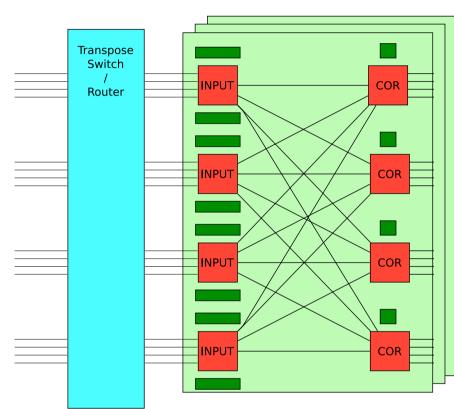
- 31 stations would need:
 - 1922 DSP48 (out of 2016)
- Store data close to multipliers (after duplication):
 - Single BRAM must store both L and R
 - 961 BRAM (out of 1064)
- Store data only once:
 - 64 BRAM (or multiple), much more routing

A closer look at DSP48E

Pros:


- No 2nd transpose
- 36 bit accumulators
- No CLB math
- Matches resources

Cons:


- 1024 accumulators
- 256 bins, 4 stokes
- Uses almost all BRAMs
- Pipeline for speed

Summary (so far)

- Only Virtex 6 can do 64MHz per chip
- But does not exist yet
- I have no Xilinx (or Altera) shares
- Either 2 or 0 QDR chips for correlator
- Correlator chip is bandwidth limited 80Gbs please?
- On Virtex 6, 31 stations is much easier than 32
- 2nd transpose or multiple accumulators
- On-chip routing resources might be final bottleneck
- 32 (31) stations, 4 Stokes is worst (best) case
- These are all just upper limits
- A lot of design paramters to review
- Hence : The Correlator Construction Kit

The numbers game (II)

- TP_{INP} (Gb/s)
- TP_{COR} (Gb/s)
- BW_{COR} (MHz)
- N_{bin}
- BW_{bin} (MHz)
- R_{bin} (bits)

Some use cases

- Current EVN correlator
 - N = 16, BW = 128MHz, $T_{int} = 0.25s$
- Next-gen correlator
 - N = 32, BW = 512MHz, $T_{int} = 0.1s$
- EVN2015
 - N = 32, BW = 8GHz 16GHz, T_{int} << 0.01s
- Spectral line research
 - N = 32, BW = 128MHz (1000m/s), BW_{bin} < 10m/s
 - Full BW at lower spectral resolution
- Space
 - $BW_{sub} = I28MHz$ (VSOP2), $N_{bin} = IE6$, delay track

-							
Input side			Output		ıt	stril	
N	16		Number of stations	Cpol	X pol, cross + auto 🛟		
Nb BW Npol Radc TP	120 128 2 1.024	MHz bits Gb/s	N*(N-1)/2 Input bandwidth Number of polarizations Resolution of ADC Data rate per station, BW * 2 * Npol * Radc	Nc Nbin Ro TPo TPo	544 139264 24 6.7 3	bits Mb/s GB/hr	Number of correlation produce: Opol * (Nb + N) Number of bins, * Nc * Npoints * Nsub Output resolution Nbin * Lo * 2.1 Tint (times 2 because complex)
ATP	16.384	Gb/s	This would be the network TP without on-site PFB All stations, N * TP	I Fg Nm	FPGA Res		Frequency goal Number of Multipliers or MACs.
	Subbands			G	270	GMAC	Estimated single FPGA performance
Nsub	8		For one polarization		DBB		One of these at each telescope
BWsub	16	MHz	BW / Nsub	1Ppfu	512	Mb/s	PFB input (per polarization): 2 * BW * Radc
Rsub	2	bits	Quantization after PFB	Dadc	256	MHz	ADC clock rate, 2 * BW
TPsub	2048	Mb/s	Subband data rate 11*2* BWsub * Rsub* 1 pol TP is the input rate for 1	Fadc/F	⁷ g 1		ADC samples per FPGA clock (>1 requires DDR/striping) BW * 2 * log2 (Nsub) * Npol / 1000 Network throughput per telescope, 2 * BW *
			correlator Fr GA, < 40Gb/s	TPtel	1024	Mb/s	Rsub * Npol
Frequency Resolution				Input chip (PFB)		(PFB)	One for each subband
Npoints			Frequency points per subband	TPfft	2048	Mb/s	Input rate for FFT, 2* BW / Nsub * Rsub * Npol * N
dF	1000 •	kHz	BWsub / Npoints	Gfft	4	GMAC	BW / Nsub * 2 * log2(Npoints) * Npol * N / 1000
Fobs	C ban (4	/	Observing frequency/band	Output chip (correlator)		orrelator)	One for each subband
ΔV	\$0.0	km/s	Doppler resolution	Gcor	35	GMAC	4 * BW / Nsub * Nc / 1000
Vmax	1691	km/s	Doppler range, Fobs - $BW/2$ to Fobs + $BW/2$	Mcor	0	MB	Storage for integration, Nc * Ro * Npoints * 2