"RFI mitigation OTOH"

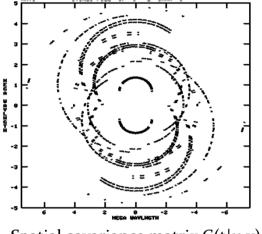
Software RFI Mitigation for VLBI and Phased Arrays

Jan Wagner RFI Workshop, MPIfR Bonn, 8-12 April 2013

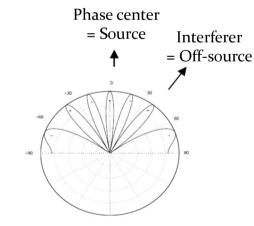
Overview

VLBI: RFI suppression

- Filtering out high fringe-rate components in raw visibilities
- "RFI" branch of DiFX Software Correlator


Focal Plane and Phased Arrays: offline RFI subtraction

- Make "RFI Template" from time-averaged data, subtract
- Trial library in DiFX Software Correlator
- Applicable in future (GBT K-band FPA, EB L-band 7-beam, EB APERTIF, LOFAR?) – current digital backends lack computing power / architecture needed to form cross-correlations between ant. elements

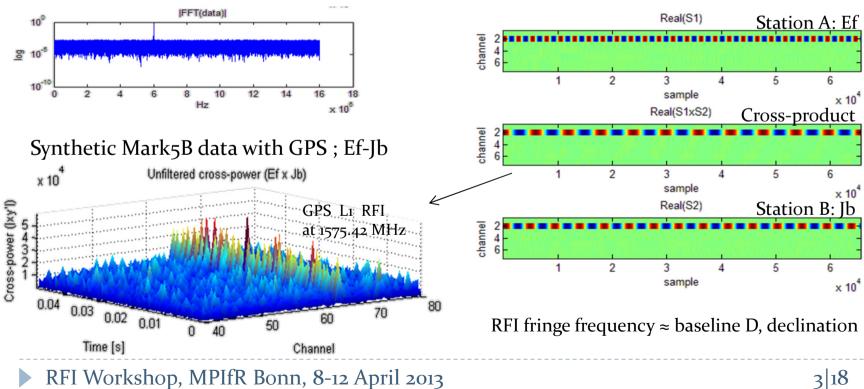

RFI Suppression for VLBI

 VLBI: spatially sample source visibility function via Earth rotation => fill sparse spatial covariance matrix of the antenna array ≈ C(t|u,v), "gridded visibilities"

 Fringe stopping in VLBI: phase center tracks source while Earth rotates – done via continual re-phasing of antennas

Spatial covariance matrix C(t|u,v)

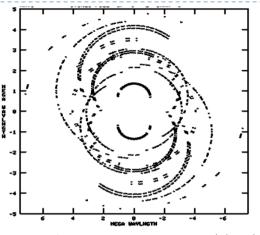
"Fringe stopping" is re-phasing the two antennas of a baseline towards the source under Earth rotation. Figure: Roshi 2003


RFI Suppression for VLBI

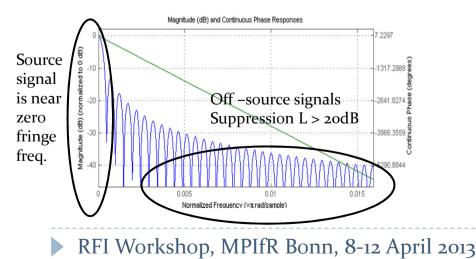
Before fringe stopping source : high fringe rate > o Hz other : low fringe rate ~ o Hz

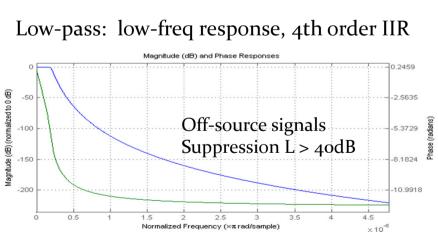
Locally stationary RFI, no Doppler

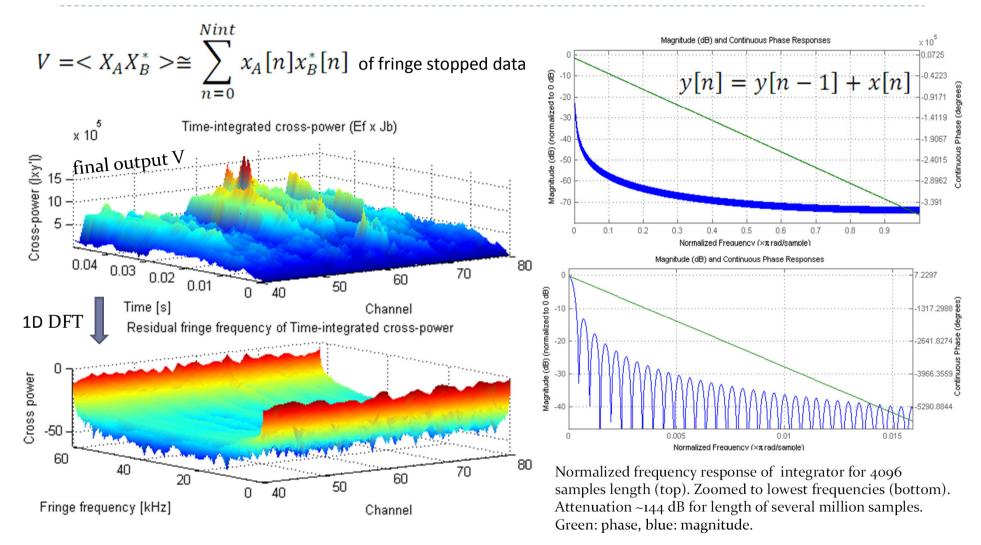
After fringe stopping source : low fringe rate ~o Hz other : high fringe rate > o Hz


Spectrogram: fringe stopping on baseline

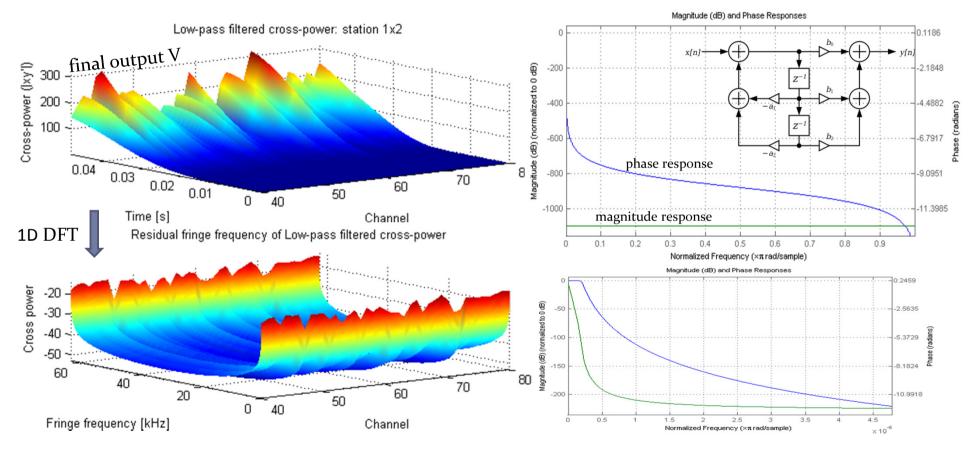
RFI Suppression for VLBI


DiFX Software Correlator
raw data is "filtered" during AP time
one C(t|u,v) sample/channel/AP gets output
== resampling, e.g. 125 kHz down to 1 Hz


Standard DiFX : time integration in APs RFI DiFX : low-pass (+ integration) "fringe rate filtering" (first suggested by Roshi et al. 2003) ~ tapering along UV track

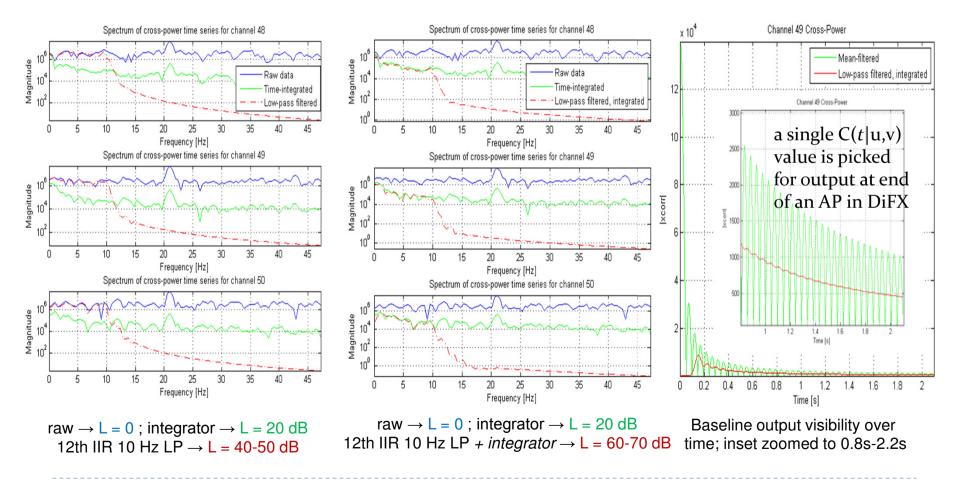

Spatial covariance matrix C(t|u,v)

Time integration: low-freq response


VLBI Fringe Rate Filtering: DiFX Time Integration

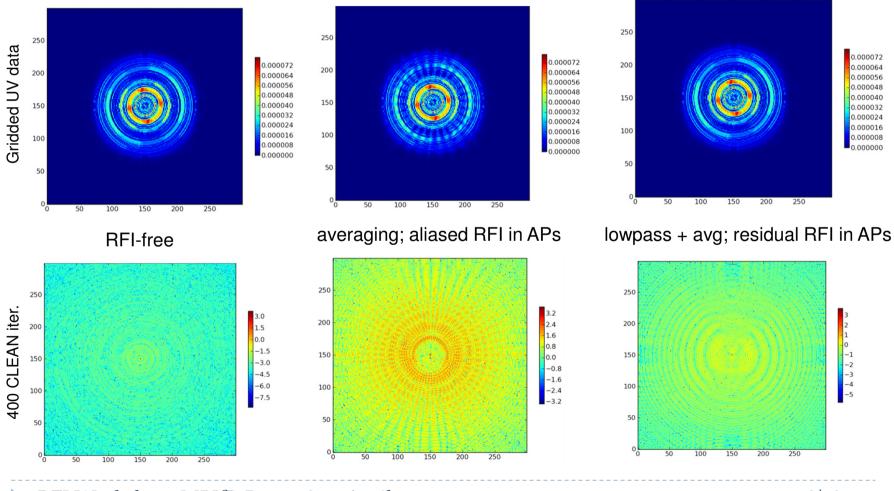
RFI Workshop, MPIfR Bonn, 8-12 April 2013

5|18


VLBI Fringe Rate Filtering: DiFX Low-Pass Filters

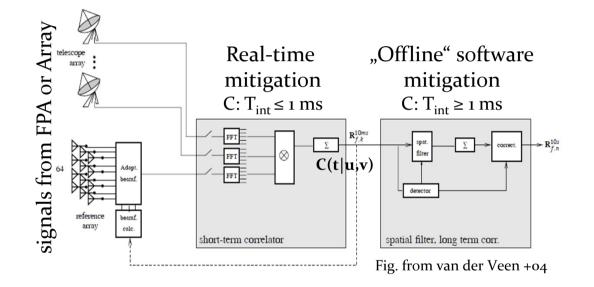
Normalized frequency response of 4th orderIIR lowpass (top). Zoomed to lowest frequencies (bottom).Green is phase and blue is magnitude response. Single precision has less atten.

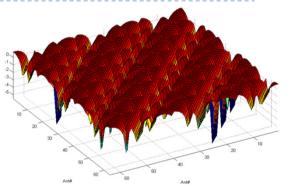
VLBI Fringe Rate Filtering


Cross-corr. with synthetic Mark5B with GPS signal, BPSK by CA sequence Ef-WB 330km; L-band; RA=0 DEC=+45; GPS lands at fringe freq of ~22 Hz

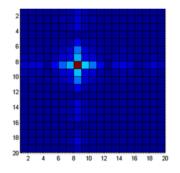
RFI Workshop, MPIfR Bonn, 8-12 April 2013

VLBI Fringe Rate Filtering


Synthetic 4-ant. array, source near South Pole, 5 kJy, RFI on one long baseline at 1% of source flux



RFI Workshop, MPIfR Bonn, 8-12 April 2013


Focal Plane and Phased Arrays: Offline Mitigation

• Input data = covariance matrix $C(t|u,v): N_{ant} \times N_{ant}$

Example covariance matrix for N_{ant}=8x8 uniform grid array Same matrix, after imaging:

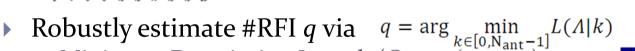
- Method 1 RFI Subtraction : in DiFX Library
 - one or more $(N_{ref} \ge 1)$ reference antennas to make "RFI Template"; must have ref. antennas part of C(t|u,v) !!
- Method 2 RFI Nulling : also in DiFX Library
 - old but very effective when N_{ref}=0 and strong RFI

FPA RFI Nulling

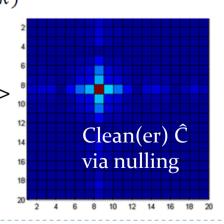
- No reference antennas -- estimate #RFI from covariance Ĉ: N_{ant}xN_{ant}
- Take matrix eigendecomposition (SVD, EVD) of \hat{C} to get eigenvalues Λ :

$$\hat{C} = WAW^* = W \begin{bmatrix} A_{00} & 0 \\ 0 & A_{11} \end{bmatrix} W^*$$

$$\hat{C} \text{ with faint source and 2 strong RFI eigenvalues}$$

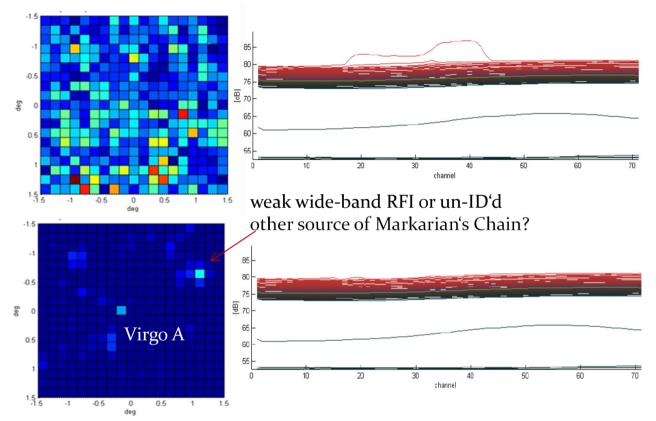

$$\frac{V}{2} = X + \frac{10^8}{10^8}$$

$$\frac{V}{2} = \frac{10^8}{10^$$


10

20

30



- Minimum Description Length (Occam's razor)
- 3σ threshold, MAD threshold, ...
- Replace q peak eigenvalues by non-RFI median => or by zero (=nulling)
- Old but quite effective offline mitigation!

64 antennas => 64 eigenvalues

FPA RFI Nulling – APERTIF on Virgo A

Raw Ĉ :1-sec averaged On (Virgo A) and Off (sky) pointings with Wb APERTIF, provided by W.v.Cappellen

APERTIF :121 array elements, 71 channels, 1.4830 to 1.4967 GHz

Strong RFI from AfriStar No reference antennas

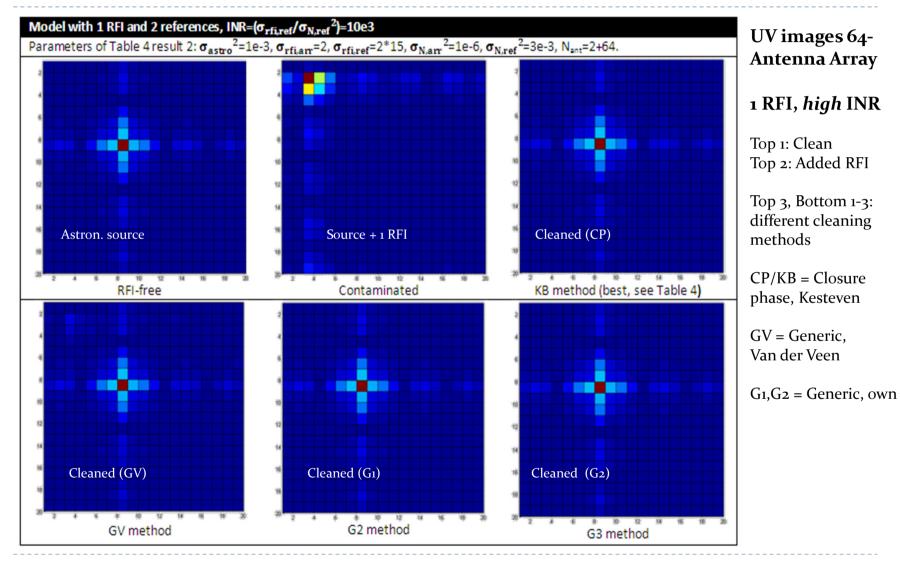
Images: On-Off deltas averaged over 71 channels, before and after Nulling.

Top image: original On-Off delta covariances, rms σ =3.99. Bottom image: "nulled" covariances, rms σ =1.11. Image FOV=1.5°. WSRT main dish f/D=0.35, D=25m subtends 55°. Nulled data enhances Virgo A at ~(0°,0°). Point source at (-0.7°,1.1°) either wide-band RFI in WSRT spillover or an unidentified other source in Markarian's Chain.

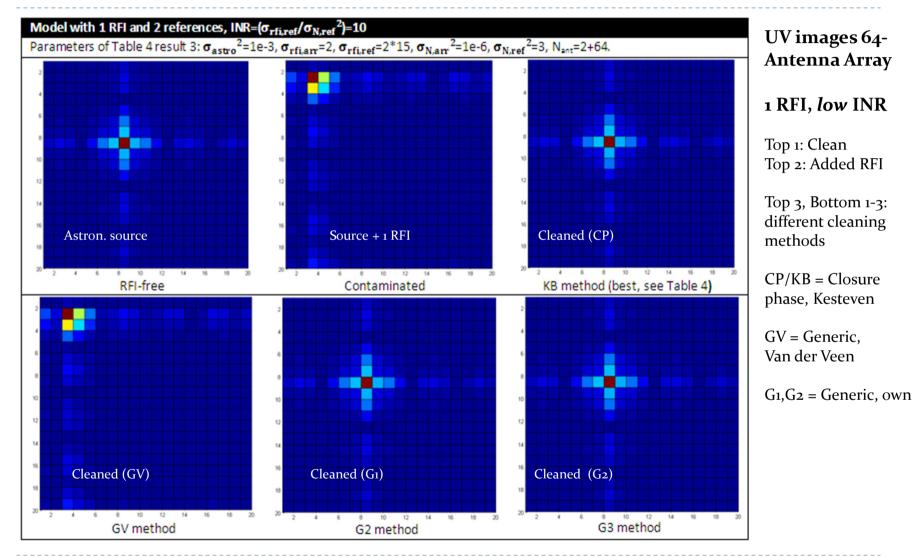
FPA RFI Subtraction

- RFI Subtraction : form template RFI footprint & subtract from data
- Need time-integrated covariance matrix $\hat{C}(f)$ incl. reference antennas:

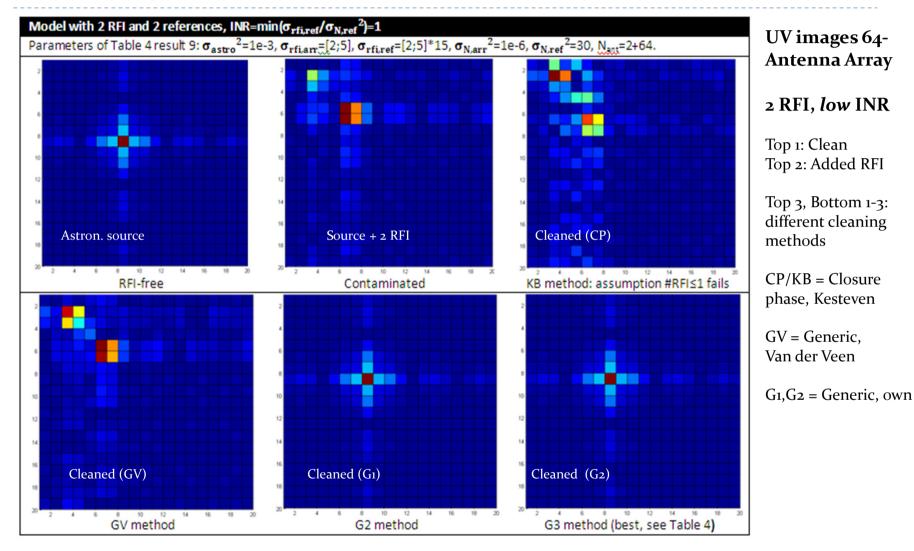
$$\hat{\mathbf{C}} = \begin{bmatrix} \mathbf{C}_{rr} & \mathbf{C}_{ra} \\ \mathbf{C}_{ar} & \mathbf{C}_{aa} \end{bmatrix} \quad (\mathbf{C}_{ra} = \text{Reference x Array, } \mathbf{C}_{aa} = \text{Array x Array, } \mathbf{C}_{rr} = \text{Ref x Ref})$$

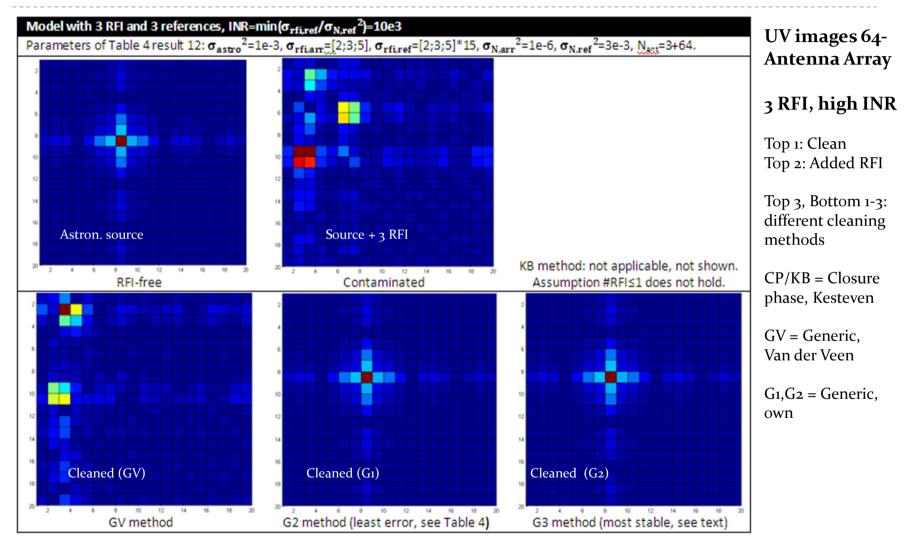

Closure Phase method (Kesteven, Briggs, 2000): perfect subtraction

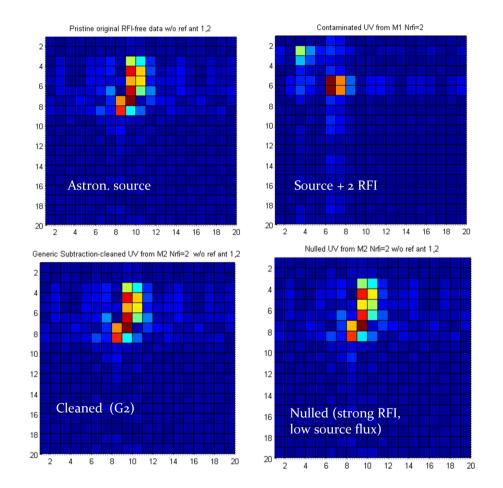
$$\tilde{C}(i,j) = \hat{C}_{aa}(i,j) - \frac{C_{ar}(i,a_1)C_{ra}(a_2,j)C_{rr}^*(a_1,a_2)}{\alpha(f) + C_{rr}(a_1,a_2)C_{rr}^*(a_1,a_2)} \quad \text{for } N_{ref} = 2 \text{ and } N_{rfi} \le 1$$


- Generic method (van der Veen, 2004): good to mediocre subtraction $\tilde{C} = C_{aa} - (C_{ar}C_{rr}^{-1}C_{ra})_{.}$ for $N_{rfi} \le N_{ref}$ at high INR
- Generic robust method (own): good subtraction, two alternate ways

$$\begin{split} \tilde{C} &= C_{aa} - C_{ar} \left(C_{ra} C_{aa}^{-1} C_{ar} \right)^{\dagger} C_{ar} \\ \tilde{C} &= C_{aa} - \left(C_{ar} C_{ar}^{\dagger} \right) C_{aa} \left(C_{ar} C_{ar}^{\dagger} \right)^{*} \qquad \text{for } 1 \leq N_{ref} \leq N_{rfi} \text{ down to low INR} \end{split}$$


Details at: <u>http://www.radionet-eu.org/fp7wiki/doku.php?id=jra:albius:processing</u>


RFI Workshop, MPIfR Bonn, 8-12 April 2013


RFI Workshop, MPIfR Bonn, 8-12 April 2013

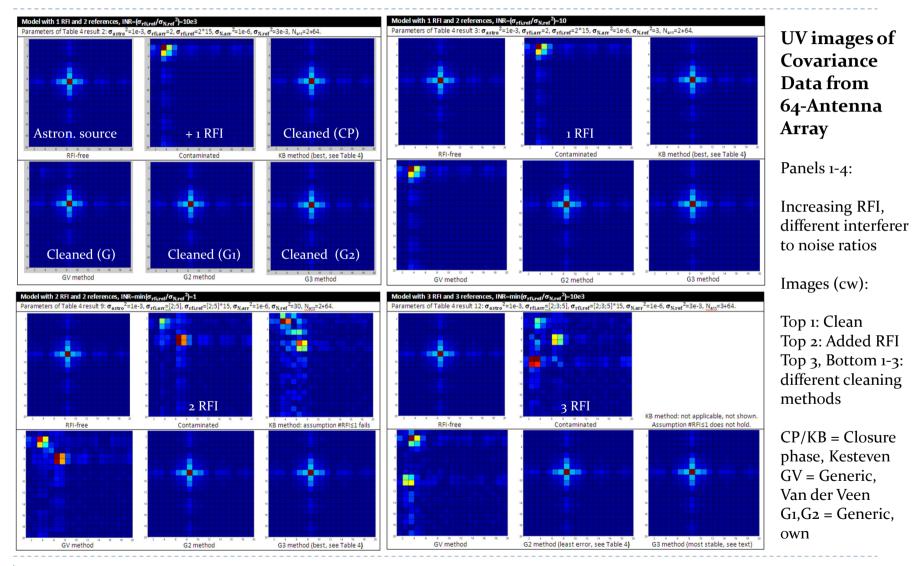
RFI Workshop, MPIfR Bonn, 8-12 April 2013

RFI Workshop, MPIfR Bonn, 8-12 April 2013

UV images 64-Antenna Array 2 RFI, high INR Extended source Top 1: Clean Top 2: Added RFI Bottom 1: Generic 2 Bottom 2: Nulled

Summary

VLBI: RFI suppression


- In the "RFI" branch of DiFX Software Correlator
- In principle working, but leaves residual RFI "power" in channels, not so interesting for spectral line VLBI!

Focal Plane and Phased Arrays: offline RFI subtraction

- Test library in "RFI" branch of DiFX Software Correlator
- Even basic "Nulling" quite powerful
- Reference antenna methods similarly powerful, plus carry much reduced risk of harming astronomical signal
- But: fresher back-end hardware required to employ in real, running observations (HI surveys etc)!

Thanks!

RFI Workshop, MPIfR Bonn, 8-12 April 2013

Error Comparison

	σ_{astro}^2	$\sigma_{rfi,arr}^2$	$\sigma_{rfi,ref}^{2}$	$\sigma_{N,arr}^{2}$	$\sigma_{\rm N,ref}^{2}$	Nent	ε(C)	INR	ε <mark>(KB)</mark>	ε <mark>(GV)</mark>	ε(G2)	ε <mark>(G3)</mark>
		single RFI				2 refs						
1)	1e-3	2	x 15	1e-6	1e-6	2+64	1e-9	30e6	2.2e-11	3.8e-8	1.5e-8	5.5e-8
2)	1e-3	2	x 15	1e-6	3e-3	2+64	1e-9	10e3	2.2e-11	1.0e-4	1.8e-8	5.5e-8
3)	1e-3	2	x 15	1e-6	3	2+64	1e-9	10	2.2e-11	9.5e-2	2.0e-8	5.5e-8
4)	1e-3	2	x 15	1e-6	3	2+64	1e-6	10	4.1e-11	9.5e-2	1.5e-1	2.1e-5
		dual RFI				≥2 refs						
5)	1e-3	[2;5]	x 15	1e-6	1e-6	2+64	1e-9	30e6	7.0	2.8e-7	1.5e-7	7.6e-8
6)	1e-3	[2;5]	x15	1e-6	3	2+64	1e-9	10	7.0	0.72	1.5e-7	7.6e-8
7)	1e-3	[2;5]	x15	1e-6	3	3+64	1e-9	10		0.41	1.5e-7	7.6e-8
8)	1e-3	[2;5]	x 15	1e-6	3	4+64	1e-9	10		0.19	1.5e-7	7.6e-8
9)	1e-3	[2;5]	x 15	1e-6	30	2+64	1e-9	1	7.0	3.44	1.5e-7	7.6e-8
10)	1e-3	[2;5]	x3e-3	1e-6	30	2+64	1e-9	1e-4	7.0	6.99	1.5e-7	7.6e-8
		triple RFI				≥3 refs						
11)	1e-3	[2;3;5]	x 15	1e-6	1e-6	3+64	1e-9	30e6		2.8e-5	2.2e-6	4.1e-6
12)	1e-3	[2;3;5]	x15	1e-6	3e-3	3+64	1e-9	10e3		8.4e-2	2.2e-6	4.1e-6
13)	1e-3	[2;3;5]	x 15	1e-6	3	3+64	1e-9	10		6.02	2.2e-6	4.1e-6
14)	1e-3	[2;3;5]	x 15	1e-6	1e-6	4+64	1e-9	30e3		4.6e-6	8.0e-7	4.1e-6
15)	1e-3	[2;3;5]	x15	1e-6	1e-6	5+64	1e-9	30e3		1.3e-6	5.5e-7	4.1e-6

Table 4 – Performance comparison of all four subtraction methods for the same 64-element antenna array. Rows show signal power level inputs and the emulated covariance estimation error, number of antennas (reference + array), the derived smallest interference to noise ratio (INR) in the references and the resulting max. abs. errors ε of each method relative to the RFI-free model. Not all cases are physical. Changed input values and lowest errors are indicated by bold type.

DiFX / RFI Library Performance

Single-core throughput on Xeon E5430 ; 64 antennas One channel == one covariance matrix

\$ # Armadillo with ATLAS, Beamformer compiled '-g –O3 –Wall -DUSE_SINGLE_PRECISION=1' \$ numactl –physcpubind=0 ./benchmark					
Integrate 64-elem vector into Covariance	156000 channels/sec (better use FPGA or GPU!)				
Decomposition -> recomposition (average)	270 channels/sec				
SVD -> RFI detect -> null -> recomposition	190 channels/sec				
EVD -> RFI detect -> null -> recomposition	310 channels/sec				
1-RFI/ch, 2-reference Template subtraction	8700 channels/sec				
2-RFI/ch, 2-reference Template subtraction	21900 channels/sec				
64-beam classical beamformer	5850 channels/sec				
64-beam MVDR (Cox b=1.0)	390 channels/sec				
64-beam RB-MVDR (Cox b=1.0+1e-4)	360 channels/sec				

DiFX Configuration File Changes: *.v2d

Example vex2difx *.v2d descriptor file with RFI-related parameter highlighted

```
# Template v2d file for DiFX correlation of W3OH
vex = w3oh.vex.clocks
antennas = EF, JB, WB
singleScan = True
# The nChan should never be less than 128.
# For numbers of channels < 128, set specAvg so nChan/specAvg
# gives the desired number of channels
SETUP default
  tInt = 2.048
 nChan = 2048
  nFFTChan = 2048
 xmacLength = 2048 # to prevent FFT division into 16 x 128-channel pieces
  doPolar = True
  # enable RFI filters (if unspecified, defaults to False/off)
  doRFI = True
  # RFI filtering is only applied inside sub-integration time intervals.
  # Final summation of the sub-integration outputs does not use a filter.
  # To reduce aliasing you may increase the sub-integration time (at cost of RAM).
  # Subint of 0.512s will produce 4 subints for the full 2.0s Tint.
  subintNS = 512000000 # optional
# This, along with SETUP default above, should always be done
RULE default
  setup = default
```

DiFX Configuration File Changes: *.input

Extra fields in RFI DiFX	*.input file compared to trunk DiFX
# COMMON SETTINGS #	# I
CALC FILENAME:	/Exps/w3oh/w3oh_01.calc
CORE CONF FILENAME:	/Exps/w3oh/w3oh_01.threads
EXECUTE TIME (SEC):	120
START MJD:	55638
START SECONDS:	59651
ACTIVE DATASTREAMS:	3
ACTIVE BASELINES:	3
VIS BUFFER LENGTH:	80
OUTPUT FORMAT:	SWIN
OUTPUT FILENAME:	/Exps/w3oh/w3oh_01.difx
RFI FILT TYPE:	CHAIN
RFI FILT COEFFS:	/Exps/w3oh/w3oh_01.coeff
	- 1
# CONFIGURATIONS ##;	
NUM CONFIGURATIONS:	
CONFIG NAME:	-
INT TIME (SEC):	
SUBINT NANOSECONDS:	512000000

DiFX Configuration File Additon: *.coeff

```
# ---- Example filter configuration file
# Filter types: 0 = Integrator, 1 = Integer Decimator, 2 = IIR biguad, 3 = FIR,
# 4 = Digital State Variable Filter (DSVF), 5 = Moving Average
5 # Number of filters in series, with type and settings in the order below:
# ----- Integrator
0 # type: 0=integrator, has no coefficients
# ----- Integer factor Decimator
1 # type: 1=decimator
3 # decimation ratio
# ----- Biguad IIR Filter
2 # type: 2=IIR-SOS/biguad
4 # filter order, order 4 requires two 2nd order section
9.99831172521226110e-006 # input prescaling gain
# filter coefficients, b0(1) b1(1) b2(1) a0(1) a1(1) a2(1); etc
1.0 -1.999999451637268070 1.0 1.0 -1.99986529350280760 0.99986535310745239
1.0 -1.99999928474426270 1.0 1.0 -1.99989640712738040 0.99989646673202515
# ---- Digital state variable filter
4 # type: 4=DSVF
1.0 # input prescaling gain
0.000773 # tuning f = 2*sin(pi*(1024*(1/0.52))/16e6)
       # quality q = 1/Q = 1/2.0
0.5
# ---- Moving average filter
    # type: 5=MAvg
5
     # length L of window
16
0.0625 # input prescaling gain, thus if gain=1/L then output is a moving average
```

D