

An European project supported within the 7th framework programme

FP7- Grant Agreement no. 283393 – RadioNet3

Project name: Advanced Radio Astronomy in Europe

Funding scheme: Combination of CP & CSA

Start date: 01 January 2012 Duration: 48 month

Deliverable 8.1

Document on definition of coding interfaces and
conventions

Due date of deliverable: 2012-12

Actual submission date: 2012-12-17

Deliverable Leading Partner: JOINT INSTITUTE FOR V.L.B.I. IN EUROPE (J.I.V.E.)

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 2 of 9

Document information
Document name: Document on definition of coding interfaces and conventions

Type Report

WP 8 (UniBoard2)

Authors Jonathan Hargreaves (JIVE)

Eric Kooistra (ASTRON)

Arpad Szomoru (JIVE)

Dissemination Level

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 3 of 9

Content:

Document information ... 2
Dissemination Level ... 2
Content ... 3

1 Introduction ... 4
2 UniBoard and UniBoard2 .. 4

2.1. UniBoard Research Activity .. 4
2.2. UniBoard Hardware .. 4
2.3. UniBoard Applications .. 6
2.4. Firmware Development ... 6
2.5. Introduction to UniBoard2 ... 6

3 Requirements ... 7
3.1. Description of the Module ... 7
3.2. List of Files .. 7
3.3. Hardware Interface ... 8
3.4. Software Interface ... 8
3.5. Test Bench .. 8
3.6. SVN Conventions ... 8

4 Recommendations ... 9
4.1. Extended Documentation ... 9
4.2. Coding Style ... 9
4.3. Bug Reporting ... 9

	

Terminology:
ASIC Application Specific Integrated Circuit
CX4 Standard four lane copper interface for XAUI connections
DDR3 Double Data Rate memory interface standard
FPGA Field Programmable Gate Array
HDL Hardware Description Language
Gsps Giga Samples Per Second
PPS Pulse Per Second
SDC Synopsys Design Constraints
SFP+ Small Form factor Pluggable interface
SKA Square Kilometer Array
Sps Samples Per Second
SVN Subversion (database for source code version control)
TCL Tool Command Language
UDP User Datagram Protocol (packet layer used for data transport via Ethernet)
UNB UniBoard
VHDL Very high speed integrated circuit Hardware Description Language

References:
1. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, E. Kooistra
2. $UNB/doc/howto/how_to_write_VHDL.txt, E. Kooistra
3. http://www.radionet-eu.org/fp7wiki/doku.php?id=jra:uniboard:documents – UniBoard Wiki
4. http://www.radionet-eu.org/uniboard2 - UniBoard2 Wiki
5. https://svn.astron.nl/UniBoard_FP7/ - SVN repository for UniBoard source code
6. https://support.astron.nl/astron_issuetracker/projects/uniboard - UniBoard bug tracking

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 4 of 9

1 Introduction

In distributed projects, like RadioNet3, the re-use and sharing of code could potentially save a
tremendous amount of effort. Throughout the UniBoard project however, even through
firmware was stored in a common repository accessible to all partners, exchange of code
hardly occurred. Part of the effort in UniBoard² will deal with formalizing the exchange
mechanism through the definition of coding conventions and common interfaces, in order to
optimize the re-use and the combination of available blocks of firmware among developers.

The aim of this document is to propose guidelines to make code reuse amongst the partners
easier. The emphasis is on providing the documentation and files necessary for another
engineer to understand what the module does and how to connect it up in another application.
These steps are listed in Section 3, Requirements. In many cases modules can be reused
without reading the source code, however this will be necessary if the module needs to be
modified and maintained. The steps listed in Section 4, Recommendations, are intended to
help an engineer understand how the module works. First, in Section 2, a brief summary of
both UniBoard and the current UniBoard2 project is given.

2 UniBoard and UniBoard2

2.1. UniBoard Research Activity
UniBoard was a research activity of RadioNet FP7 (grant number: 227290) [3], which ended in June
2012.

The aim of the UniBoard project was to create a generic platform for radio astronomy signal processing
with as much processing power and IO as could reasonably fit on one board. Standard 10 gigabit
Ethernet interfaces would be used for IO and front-to-back symmetry would allow data flow in both
directions. All processing nodes would be identical and as generic as possible so that the same
hardware could be used for many applications.

2.2. UniBoard Hardware
A block diagram of the UniBoard hardware is shown in Figure 1. The large squares denoted FN (front
node) 0-3 and BN (back node) 0-3 represent eight Altera EP4SGX230 field programmable gate arrays
(FPGAs). An FPGA is a programmable integrated circuit which contains an array of logic elements
which can be wired together to perform a function similar to that performed by a fully customized
application specific integrated circuit (ASIC). Unlike an ASIC however, an FPGA can be re-programmed
as often as needed. Its function is determined by firmware, usually written in a hardware description
language such as VHDL (Very high speed integrated circuit Hardware Definition Language).

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 5 of 9

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

Memory bank

FN 0 BN 0

FN 1 BN 1

FN 2 BN 2

FN 3 BN 3

4x SFP+

4x SFP+

4x SFP+

4x SFP+

Power
Clock, sync

Backplane
side

Front panel
side

1GbE
switch

4x
RJ45

1GbE to each FPGA

4x 1GbE

4x 10GbE

4x 10GbE

4x 10GbE

4x 10GbE
SFI-XAUI 4x4 TR 4x4 TR

4x4 TR

32 LVDS

4x4 TR

32 LVDS

4x4 TR

32 LVDS

4x4 TR

32 LVDS

2x 2GB DDR3
Max. ≈ 2x 25 Gbps rd
+ 2x 25 Gbps wr

Full mesh between
FN – BN FPGAs

Max. ≈ 0.4 TMAC/s

Figure 1: Block Diagram of UniBoard Hardware

All FPGAs contain an array of logic cells that can be programmed to form such structures as AND/OR
gates, multiplexers and small memories. The FPGAs on the UniBoard also contain 1288 eighteen bit
multipliers, 182400 flipflops and 14.6Mbits internal memory. Four multipliers can be linked to form one
eighteen bit complex multiplier. The multipliers offer high performance with the result available within
1.2ns, however the overall performance of a system depends on the speed with which data can be
moved in and out of the multiplier cells. This is highly application dependent because routing delays
between elements inside the FPGA increase with the complexity of the design. At a realistic system
clock rate of 250MHz the whole board can perform 644E9 complex multiply-accumulate operations per
second.

Two 64bit wide, 1066MT/s SODIMM (laptop memory) slots are connected to each FPGA. These allow
the whole board to be configured with up to 64GB DDR3 storage. Each FN is connected to each BN by
a 24Gbps fully duplex transceiver mesh. Only the connections to FN0 and BN0 are shown in Figure 1
for clarity.

External connections differ slightly between the front and back nodes. All nodes have four external ten-
gigabit Ethernet ports, although currently only three can be used simultaneously due to internal routing
restrictions in the FPGAs. The FNs are provided with SFP+ cages, whilst the BNs use CX4 copper
connectors. Additionally each BN has 32 low voltage differential signal (LVDS) input pairs suitable for
connecting an analog to digital converter board. Two differential pair input signals are distributed to all
eight FPGAs: one for use as an external system clock and the other as a global sync pulse such as a
PPS.

The power requirements are a -48V supply at 10A, with typical consumption of 2.5 to 7A depending on
the application.

A single chip gigabit Ethernet switch, shown at the bottom left of Figure 1, provides a 1Gbps control
connection to each FPGA. A JTAG boundary scan bus permits continuity testing between major
components and downloading the FPGA firmware, either directly to the FPGA or to a non-volatile
EEPROM placed beside each FPGA. The EEPROMs can hold up to three compressed images:

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 6 of 9

typically a safe power-up configuration and one or two application configurations. It is possible to
reprogram the EEPROM via the Ethernet control port, so that the JTAG cable can be removed in
production installations.

2.3. UniBoard Applications
The UniBoard architecture is especially suited for processing one or multiple, high-bandwidth
input signals in parallel. The LVDS interfaces at the back nodes can directly connect to an
external board with one or multiple ADCs. For examples the 4 back nodes on one UniBoard
together allow connecting 16 digitized signals from 16 eight-bit ADCs each sampling at up to 1
Gsps. For a very wideband digital receiver one UniBoard may even use the LVDS interfaces to
connect 1 digitized signal from 1 eight-bit ADC that is sampling at 16 Gsps. The input signals
may also be digitized a distant location that can be meters or even thousands of kilometers
away. The digitized signals are then send to the UniBoard via the gigabit links, in which case
they can enter the UniBoard at the front nodes as packetized data, e.g. in the form of UDP/IP
packets via 10G Ethernet. On the UniBoard typically the input signals are first separated into
frequency subbands by a set of filterbanks. The frequency subbands are independent and
therefore they can be processed further at different nodes. The subbands are distributed to
different nodes via the full duplex giga bit links of the mesh-interconnect between the front
nodes and the back nodes on the UniBoard. Typical examples of astronomical applications
that use processing of multiple input signals at subband level are correlation and
beamforming. Furthermore the large DDR3 memories on the UniBoard support temporary
storage of raw sampled input signal data or subband data e.g. for delay compensation and
event capturing.

2.4. Firmware Development
As noted previously, FPGA applications consist of firmware written in VHDL or Verilog. It is also
possible to enter a design graphically but the UniBoard applications have been written in text as this
allows better control over the implementation and improves portability. During development, ModelSim
simulation software is used to check the design for functional correctness. Synthesis software provided
by the FPGA manufacturer maps the design onto the logic elements available on the chip, and then
performs a place-and-route operation to connect everything up. Finally a bit file is generated which can
be downloaded to the FPGA.

Generally the term ‘design’ refers to a top-level entity whose ports are connections to the external pins
of the FPGA. Typical designs contain a hierarchy of modules. The term ‘module’ covers a wide range of
complexity, from a single entity performing a simple logic operation, to many thousands of lines of code
spread over several files. A module can also refer to a library of several related entities.

UniBoard designs make extensive use of Altera MegaWizard IP blocks for infrastructure functions such
as the 10 Gigabit Ethernet ports, DDR3 controllers, DSP functions and FIFOs. The remaining code is
custom written by engineers at the participating institutions, however there are many functional blocks
which are common across different applications – from simple counters to FFTs and filter banks. Clearly
there is an advantage if code written for one application can be reused in another. To an extent this was
already done in the UniBoard project since finished designs and modules are shared between the
project partners using an SVN repository, however relatively few of the shared modules were actually
re-used. The purpose of this document is to recommend ways of making code re-use work better in
UniBoard2.

2.5. Introduction to UniBoard2
UniBoard² (grant number 283393) started on July 1st 2012. UniBoard² will create an FPGA-
based, generic, scalable, high-performance computing platform for radio-astronomical
applications [4]. This WP consolidates and builds upon the experience obtained through the
UniBoard project to create a completely re-designed platform with several innovative features,
that will be ready for the next generation of astronomical instruments (notably the SKA), at the

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 7 of 9

end of 2015.

Power efficiency is going to be a crucial issue for future instrumentation. For this platform the
newest technology available on the timescale of the project will be used, which means
replacing the current 40 nm with 28 nm or even 20 nm FPGAs. The use of a technique offered
by FPGA manufacturers under names such as HardCopy or EasyPath will be investigated.
This enables one to develop on standard FPGAs and then to freeze the design into ASICs with
the same footprint. While a full-blown hard-copy production run is not feasible due to the high
initial cost involved, UniBoard² will design the applications with hard copy in mind, and run
extensive simulations to determine its effect on power consumption. Further "green" measures
will include the use of non-leaded components, the careful balancing of system parameters
and performance and the optimization of firmware designs and algorithms.

To be able to freeze an application design into a hard-copy FPGA it is essential that the
firmware code is robust and well-tested. Modular design and code-reuse greatly help to make
the code more robust. Modular design allows a piece of code to be reused in different
applications. Reusing modules increases the reliability of the module and the application
because if a module already works fine in many applications it is likely to work fine in the next
application as well. Should a module still contain a bug then fixing this bug will benefit all
applications that use the module. Initially modular design requires extra development effort,
however the increase in quality and the potential of reusing the module will reduce the
application development effort.

3 Requirements
It is a requirement that documentation be provided with every module. This section describes
the information that the documentation must include, and the other files needed, in addition to
the source code, to simulate and implement the module.

3.1. Description of the Module
A paragraph in the documentation must state the purpose of the module and provide an
overview of its function. Say what it does but not how it works, for example state the algorithm
used but don’t explain it in detail here. This text can also be in the top level VHDL file.

3.2. List of Files
The documentation is expected to include a list (and brief description) of all source files (VHDL
source code, SDC, TCL scripts and data files) needed to synthesize the module. Make it clear
which file contains the top level entity. A script file to automatically add the source files to the
project is strongly recommended. For an Altera project this would be a QIP file.

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 8 of 9

3.3. Hardware Interface
The documentation must explain how to connect the module in the design. A table of the top
level ports and generics should include:

• a description of the ports (signals)

• a description of the generics (parameters)

State the range of generics over which the design can be synthesized and has been verified. A
timing diagram can illustrate signal behavior if this is not clear from the text. In most cases the
waveforms created by running the test bench (see below) serve this purpose.

3.4. Software Interface
If the module contains an interface to a microprocessor or controller, the documentation is
expected to describe the module as seen by the software. The minimum requirement is a
memory map and bit level descriptions of the software registers in the module.

3.5. Test Bench
A test bench must be provided. This illustrates the behavior of the external signals and gives
an example of how to instantiate the module. Include a ModelSim .do or .mpf file to
automatically compile the test bench and its dependencies, and run it. Also include a wave.do
file to display the relevant waveforms. Optional, but highly recommended, is to make the test
bench self checking.

For modules that include a physical interface, include a reference design to show that it works.

3.6. SVN Conventions
The SVN repository for the UniBoard project is available via [3]. Follow the established
directory structure for modules and designs. The documentation can be placed in the SVN
under <modulename>/doc or on a wiki. If it is on a wiki, make a
<modulename>/doc/readme.txt file to say where it can be found. Both UniBoard and
UniBoard2 have a wiki [3, 4].

The SVN trunk/ contains the latest version of the code. Modules on the trunk can be (and
are) re-used, but may occasionally break when the source is updated. Creating occasional
tagged versions of stable code would ease reuse however the disadvantage is that it requires
extra documenting to identify the tagged versions and could mean a larger effort in case one
needs to upgrade to the latest version at once.

INFRA-2011-1.1.21 RadioNet3

An European project supported within the 7th Framework Programme (FP7) Page 9 of 9

4 Recommendations

4.1. Extended Documentation
The designer is free to provide additional explanation, both for his own convenience and that
of others, as to how the module works. While many modules can be re-used without reading
the VHDL, the code still needs to be maintained and sometimes modified either by the original
designer or someone else. Additional text and diagrams to explain the VHDL can help with
this, as can a clear coding style.

4.2. Coding Style
For re-use the code can be treated as a black box, however for development and maintenance
of code it is essential to use a proper coding style. There are several ways of writing correct
VHDL. Some engineers use a low level style where every wire is defined, whereas others
prefer a higher level style where it is left to the synthesis tools to infer structures such as state
machines and memory blocks. The latter style can be more portable between different
vendor’s FPGAs, but gives less control over the implementation. Engineers working at
different locations will use different conventions for signal names, capitalization and so on.
Thus it was decided not to impose a strict coding style across the project. An example of a
VHDL coding style that helps to write proper code is described in [1] and [2].

4.3. Bug Reporting
The Redmine issue tracking software was used during the UniBoard project to keep track of
hardware and firmware problems and their solutions. The Redmine issue tracking for the
UniBoard project is available via [6]. It is recommended to continue using this, or similar
software, in UniBoard2. When a designer fixes a bug or modifies a module, the issue tracker
should be used to disseminate the information to others using the module.

Copyright

© Copyright 2012 RadioNet3
This document has been produced within the scope of the RadioNet3 Projects.
The utilization and release of this document is subject to the conditions of the contract within
the 7th Framework Programme, contract no, 283393

