

RadioNet3 Advanced Radio Astronomy in Europe

Franco Mantovani

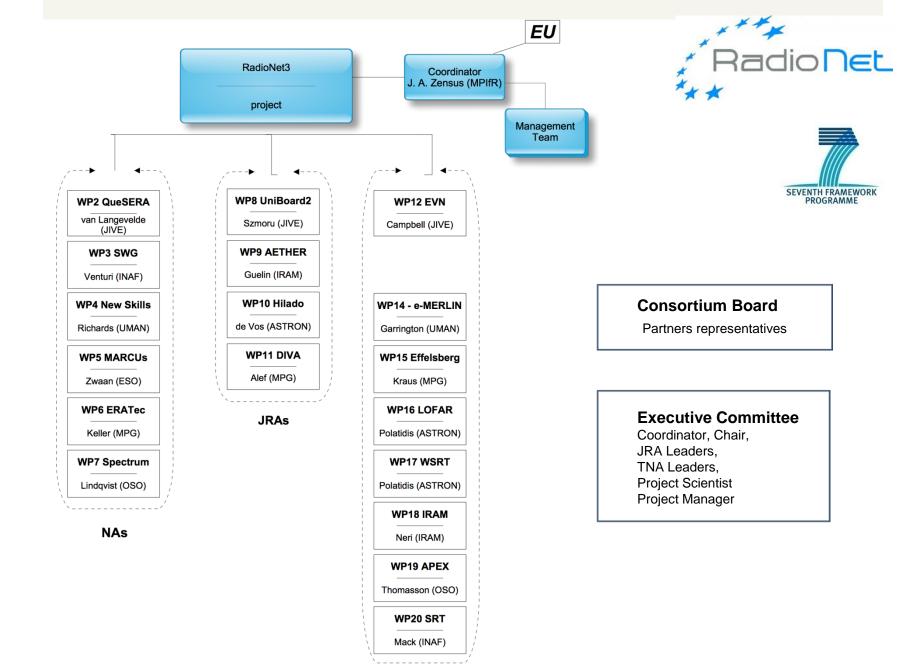
Project Scientist RadioNet3

Max-Planck-Institut für Radioastronomie, Bonn

MPIfR - RFI - 08Apr2013 2013

Contract No: 283393

RadioNet3 Advanced Radio Astronomy in Europe


RadioNet3 coordinates Europe's leading radio astronomy institutions to support scientific research by all European astronomers

RadioNet3: builds on the success of two preceding Integrating activities under FP6 and FP7

is funded by the European Commission under the Seven Framework Programme (FP7), Contract no. 283393

is a Consortium which comprises 27 partners

RadioNet3 Advanced Radio Astronomy in Europe

Management Team

rn3@mpifr.de www.radionet-eu.org

Prof. Anton Zensus **Coordinator**

Franco Mantovani Project Scientist

Izabela Rottmann Project Manager

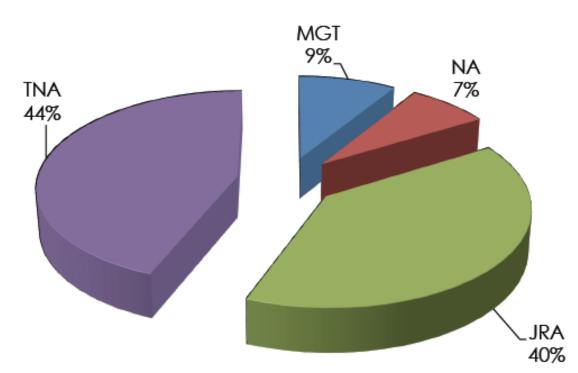
Jacqueline Casado Iglesias Project Assistant

Aukelien van den Poll TNA/NA travel Assistant

Elena Schwetz Financial Coordinator

RadioNet3 Goals

- provide and facilitate access to Europes most powerful radio-astronomical facilities, including the ALMA telescope and SKA pathfinders
- secure a long term perspective on scientific and technical developments in radio astronomy, pooling the skills, resources and expertise that exist within the RN3 partnership
- stimulate new R&D activities for the already existing radio infrastructures in synergy with ALMA and with the SKA
- contribute to the implementation of the vision developed in the ASTRONET Strategic Plan for European Astronomy


RadioNet3 Advanced Radio Astronomy in Europe

 Duration:
 2012 - 2015

 Total cost:
 EUR 11 559 079

 EU contribution:
 EUR 9 500 000

- Transnational Access
- Networking Activities
- Joint Research Activities

Transnational Access

The TNA programme is designed to stimulate the full exploitation of the **open skies policy**

The TNA offers to astronomers **access** (providing funds) to several radio telescopes and arrays covering an **unprecedented**

range of wavelengths (from 10 MHz to 1 THz)

resolving power (from arcminutes to milli-arcseconds)

Transnational Access

Interferometer arrays and Single-dishes

- o European VLBI Network
- Westerbork Synthesis Radio Telescope
- Plateau de Bure interferometer
- o <u>e-MERLIN</u>
- Low Frequency Array

- o Pico Veleta 30 m
- o Effelsberg 100 m
- Atacama Pathfinder Experiment
- Sardinia Radio Telescope

SKA pathfinders are underlined

European VLBI Network www.evlbi.org

The EVN is a distributed network of **21** individual antennas

Diameter	14 m – 305 m
Baseline	up to 10.000 km

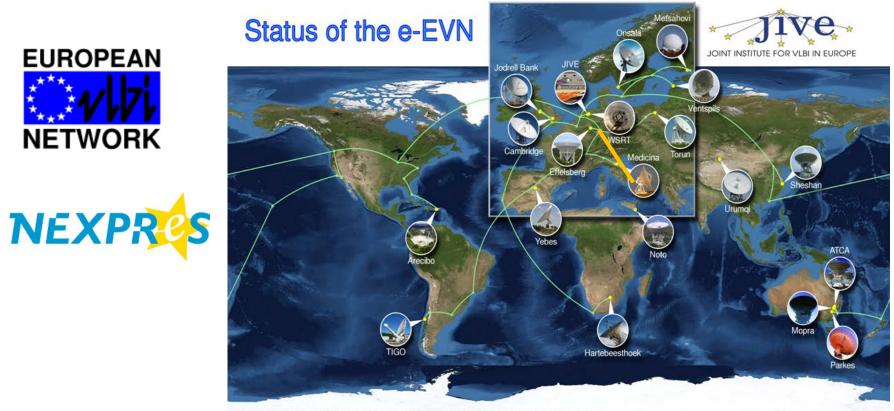
0.7 cm – 90 cm Wavelength

Max. resolution 0.5 mas (K-band)

Joint observations with the **MERLIN** (UK) array and telescopes operated by NRAO (U.S.) are made on a regular basis

Institute for VLBI in Europe (JIVE)

Correlation facility at the **Joint**



e-EVN

EUROPEAN

NETWORK

twork status as per 2000-05-02. Image created by Paul Boven «boven@jive ni». Satelite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (

e-MERLIN www.e-merlin.ac.uk

Telescope	array of 7 antennas
Frequency	1.3 – 24 GHz
Total bandwidth	4 GHz
Sensitivity	1 µJy
Resolution	10-150 mas

Effelsberg 100 m www.mpifr.de

Telescope	parabolic dish
Diameter	100 m
Frequency	300 MHz – 95 GHz
Max.angular resolution	10" (90 GHz)

Contract No. 200090

Low Frequency Array

www.lofar.org

Stations40 in the NL5 in Germany1 in UK, FR & SEDiameter1000 km or moreFrequency10 – 240 MHzMax.angular0.3" (240 MHz)

resolution 5.3" (10 MHz)

WSRT www.astron.nl

- Telescope array of 14 antennas
- Diameter 25 m
- Frequency 250 MHz 8.3 GHz
- Max.angular2.2" (8.3 GHz)resolution72" (250 MHz)

The project **Apertif:** increase of the field of view with a factor 25, placing a *focal-plane array* in the focus of each parabolic dish. Operational in 2013.

IRAM Plateau de Bure

www.iram-institute.org

Telescope6 parabolic dishesDiameter15 m eachWavelength3 – 0.8 mmMax.angular
resolution0.2" (350 GHz)

Northern Extended Millimetre Array (**NOEMA**) project will double the number of antennas by 2018

IRAM 30 m

www.iram-institute.org

Diameter 30 m

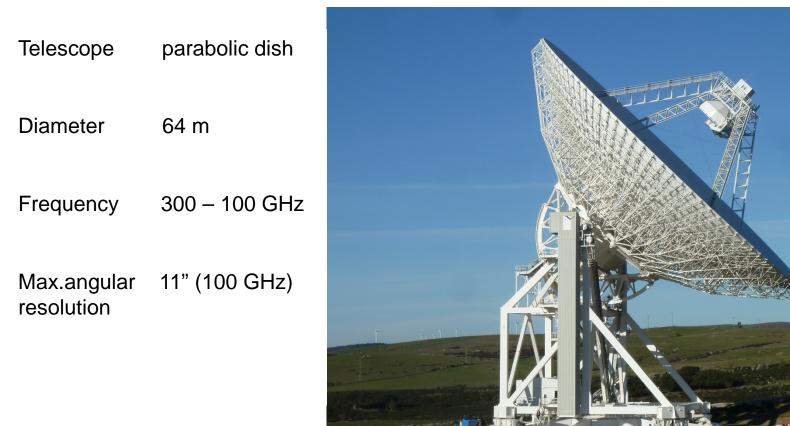
Wavelength 3-0.8 mm

Max.angular 7.5" (350 GHz) resolution

Contract No: 283393

Atacama Pathfinder Experiment

www.chalmers.se/oso - www.eso.org - www.mpifr.de


Telescope	parabolic dish
Diameter	12 m
Frequency	0.2 – 1.4 THz
Max.angular resolution	4" - 30"

Sardinia Radio Telescope www.inaf.it

Network Activities (NAs)

The NAs transform the way science is conducted in Europe

NAs are a **forum** for discussion, collaboration, and organization of specialized events, and training

NAs provide **financial support** for the organization of events

NAs provide **travel grants** to join the meetings

Network Activities

- **QueSERA** to better integrate, represent and advertise the radio astronomical facilities and ambitions
- **SWG** central coordination of the dissemination of knowledge and scientific results
- **New Skills** to equip astronomers to exploit current and future radio astronomy facilities
- **MARCUs** to support user visits to the seven nodes of the EU ARC network
- **ERATEC** to foster the collaboration on the development and operations of radio astronomy instruments in Europe, promoting interactions among engineers and scientists

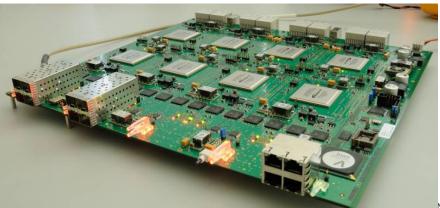
Spectrum to keep the radio astronomy frequency bands free of man-made interferences

Joint Research Activities

Support targeted R&D of new digital techniques

JRAs: UniBoard², AETHER, Hilado, and DIVA

Main aims are:


- more efficient use of telescope hardware
- increase the observing bandwidth (including operation to beyond 1 THz)
- increase the field of view of the telescopes (multi-feeds, phased array)

JRA UniBoard²

- FPGA-based, generic, scalable, high-performance computing platform for radio-astronomical applications that will be ready for the next generation of astronomical instruments, notably the SKA
- digital receiver application, which converts a wide input bandwidth into a variable number of data streams, which can then be further processed by a correlator, a spectrometer or pulsar processor

JRA AETHER

Advanced European Terahertz Heterodyne Receivers

Develops innovative heterodyne detectors and devices that yield a maximum gain sensitivity, bandwidth beyond 1 THz, and mapping speed for ALMA and for large existing EU mm/sub-mm facilities

- 67-116 GHz extremely wide RF-band heterodyne module (HEMT MMIC)
- Highly integrated and miniaturized 2SB SIS receivers for λ~1 mm Focal Plane Arrays
- Sub-millimetre Wave 2SB SIS Mixers
- Supra-THz Heterodyne Receivers operating in the highest atmospheric windows

MPIfR - RFI - 08Apr2013 2013

Contract No: 283393

JRA Hilado

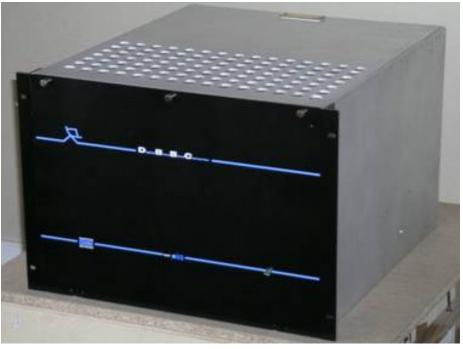
High performance processing of Large Astronomical Datasets in an Open-source environment

Optimized software and demonstrator processing pipelines

- imaging pipeline to process in a realistic timescale LOFAR data for all 80 km baselines at full FoV, 30MHz bandwidth at the lowest frequencies
- fast transient imaging currently limited for LOFAR and other RadioNet facilities

These developments apply to the ALMA and SKA pathfinders

MPIfR - RFI - 08Apr2013 2013



JRA DIVA

Developments In VLBI Astronomy

- > **DBBC** project: a VLBI digital backend with
 - 4 GHz bandwidth
 - single FPGA processor unit
 - 40/100 Gbps Ethernet output data highway
- LNA Monolithic Microwave Integrated Circuite (MMIC)
- Low-noise cryogenic application of semiconductor technologies for existing and upcoming VLBI facilities as well as for the SKA

Scientific achievements of NAs:

- ALMA & SKA were the most frequently subjects of supported conferences
- The majority of the participants came from European Institutes, however the popularity of the RadioNet3 events is growing world-wide
- 40% of the participants are women

We conform with the requirements of RadioNet3

Scientific achievements of JRAs:

JRAs Activities in phase with the plan

Scientific achievements of TNAs:

- Offering 3000 hrs (out of 1600 expected for 18 months) of access to the leading radio telescopes
- Hosting more than 700 users
- SRT Call for Proposals for observations in 2014 will be distributed

Additional achievements:

- Collaborations:
 - **ASTRONET**

AERAP - Africa Europe Radio Astronomy Partnership

MERIL - Mapping of the European Research Infrastructure Landscape

Leibnitz Institute for the Social Science – Centre of Excellence Women and Science

Horizon 2020 - responding to the EC calls for suggestions

EWASS 2013 - RadioNet3 Sp2

European Week of Astronomy and Space Science

2013 Turku / Finland

8 - 12 July 2013

RadioNet3 Special Session Sp2 - Monday 08 July 2013

"The role of modern radio observatories in black hole and jet studies"

Organizers: F. Mantovani, T. Savolainen, M. Tornikoski

"Call for Contributions" open

MPIfR - RFI - 08Apr2013 2013

Contract No: 283393

Plans for the next 12 months

Follow the scientific work plan of RadioNet3

Prepare a high quality Annual Report

Prepare a high quality Mid Term Review

Conclusions

To date

We met our scientific goals in 2012 and are on a good way for also achieving those for the coming years

In future

We aim at strengthening RadioNet and bringing radio astronomy community on a good way for the new challenges

the end

Thanks for your attention

MPIfR - RFI - 08Apr2013 2013

Contract No: 283393

