CRAF RFI Database: a MySQL implementation

Sergio Poppi INAF- Cagliari Astronomical Observatory

In collaboration with CRAF

Presentation Contents

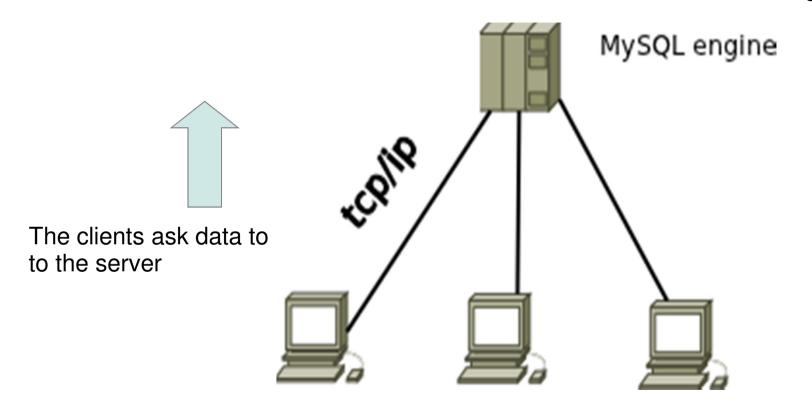
- Description of the CRAF EMI and Spectrum Occupancy Database (CRAF-01-02-rev.2)
- MySQL databases.
- Implementation CRAF EMI and Spectrum Occupancy database using a MySQL engine and web based clients.

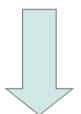
CRAF EMI & Spectrum occ. DB

- CRAF EMI and Spectrum Occupancy Database: CRAF-01-02rev.2 provide an Interference Report, which electronically is sent to the CRAF clearing house.
- •The file format for the CRAF database was adopted in the 18th CRAF meeting (Grenoble, 10-11 April 1995) and revised in 23rd the 23 CRAF meeting (St.Petersburg, 24-25 April 1997);
- •The input to the database file is a simple ASCII file with a recordlength of 80 characters.
- •The transfer of data files to CRAF is done via the ftp facility.

Database fields

				the number 999999 should be specified.
10	INT_UNIT	Character	2	Intensity unit: $KE = Kelvin$, $JY = Jansky$
				<i>Note</i> : the intensity is uncalibrated: it can
				only be calibrated if it is known where in the
				antenna pattern the interfering transmission
				is received and the antenna pattern is known.
11	RFI_AZ	Character	3	Azimuth of EMI source in degrees (if
	_			available); 'AAA' if azimuth is not defined.
12	RFI EL	Character	2	Elevation of EMI source in degrees (if
	_			available); 'EE' if elevation is not defined.
13	TYPE	Character	2	kind of observation: BR = broadband
				SP = spectral
14	ANT_AZ	Character	3	Azimuth of observation (in degrees); 'AAA'
				if azimuth is not defined
15	ANT_EL	Character	2	Elevation of observation (in degrees); 'EE'
				if elevation is not defined.
16	DEG	Character	3	degree of degradation in percent. For
				spectrum occupancy data: '000'.
20	EOR	bytes	1	specify '=' to identify end-of-record
		•		
** Total **			80 bytes	
			•	


Database features


- Data stored in a rigid structure;
- Operator must format data in suitable form (80 chars ascii);
- Data analysis made with server side scripts;

Client/server architecture

A new database

The server sends to the clients the the requested data

MySQL

- MySQL is the world's most widely used open source relational database management system:
 - A relational database is essentially a group of tables (entities).
 - Tables are made up of columns (attributes) and rows (tuples).
 - Tables have constraints, and relationships are defined between them.
 - Relational databases are queried using SQL, and result sets are produced from queries that access data from one or more tables.

Table "Books"

id	author	title	Editor	price
1	Alighieri,D.	La Divina Commedia	Mondadori	18 €
2	Kraus, J.D.	Radioastronomy	Cyg. Quasar	50€

SQL - Structured Query Language

- SQL is a special-purpose programming language designed for managing data, held in a relational database management systems (RDBMS)
- Queries

```
SELECT *
FROM Book
WHERE price > 10.00
ORDER BY title;
```

Database Management

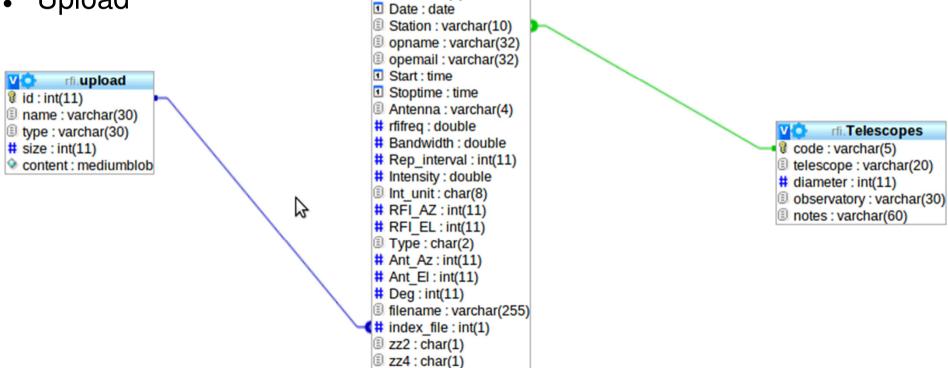
```
CREATE TABLE My_table(
my_field1 INT,
my_field2 VARCHAR(50),
my_field3 DATE NOT NULL,
PRIMARY KEY (my_field1, my_field2)
);
```

Database maintenance

- The SQL strings allow the maintenance of the database:
 - Create tables
 - Add columns
 - Grant users
 - Add new users
 - Give permissions to users
 - Specialize the users' privileges

The MySQL implementation

- Based on CRAF EMI and Spectrum Occupancy Database (CRAF-01-02-rev.2)
- Architecture: client and server
- Scalable (its ability to be enlarged to accommodate the growth)
- Server made with open source software;
- Clients can be written with several programming languages


CRAF DB: MySQL implementation

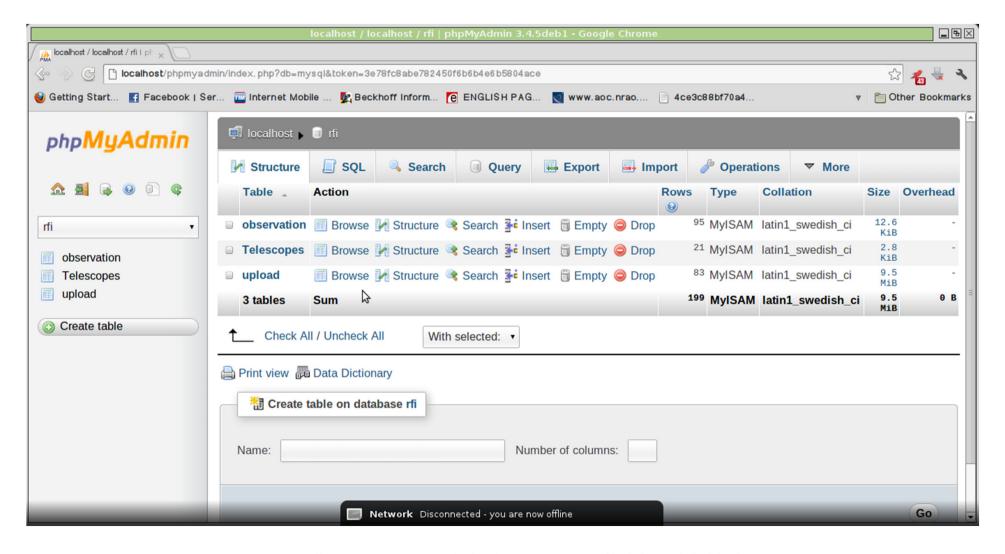
- On the server side:
 - MySQL Server;
 - Apache web server, with php module
- On the client side:
 - Web browser

CRAF DB: MySQL implementation

Designed in 3 tables

- Observation
- Telescope
- Upload

rfi.observation


index:int(6)

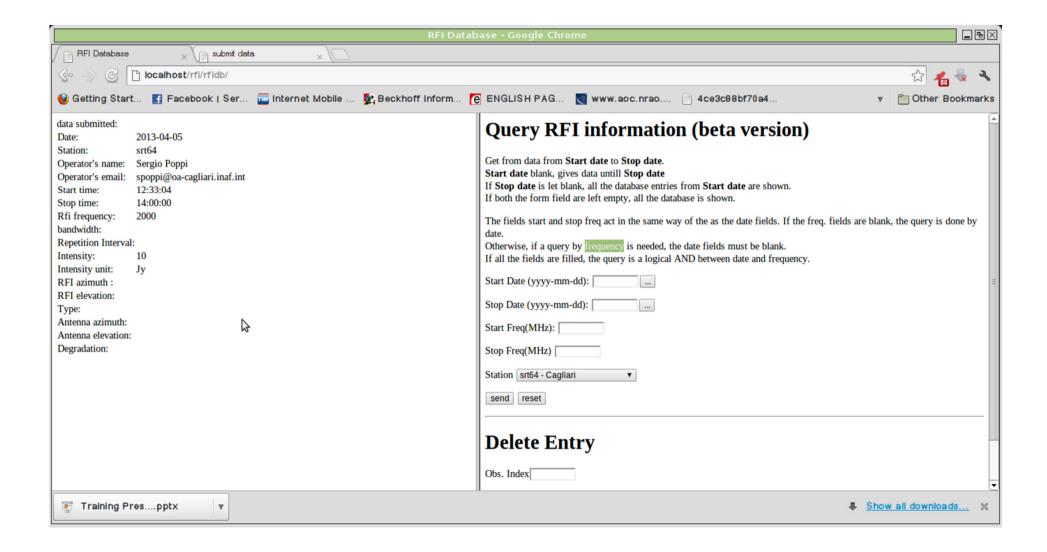
CRAF MySQL DB administration

 DB Administration with command line interface or through web interface (phpMyAdmin);

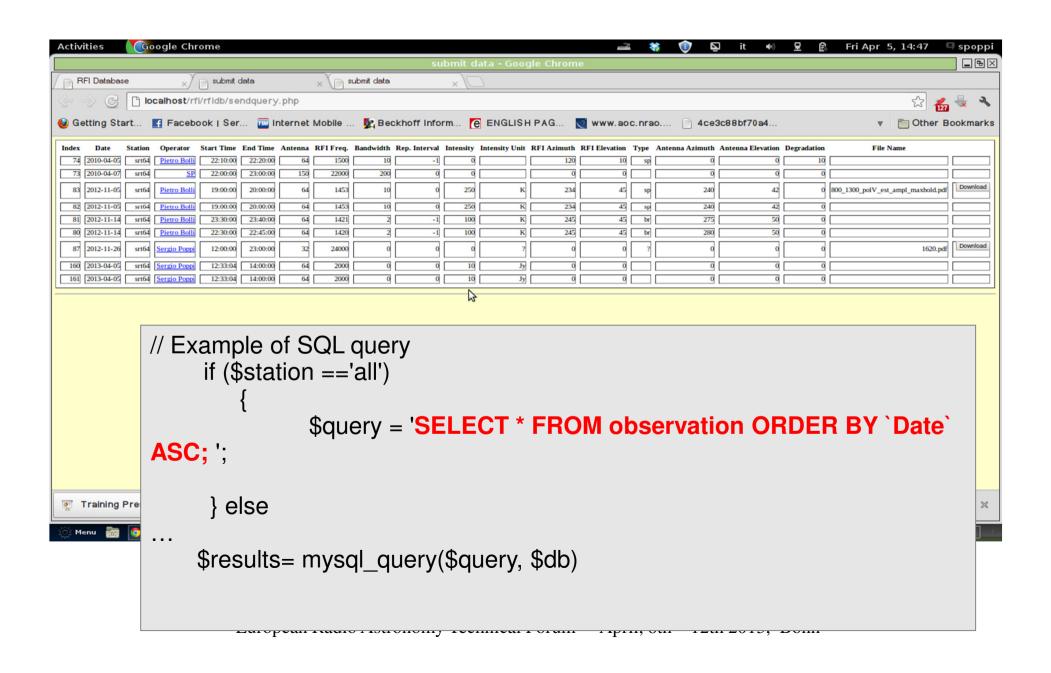
```
File Edit View Search Terminal Help
Server version: 5.1.67-OubuntuO.11.10.1 (Ubuntu)
Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysgl> show databases;
 Database
 information schema
 mvsal
 phpmyadmin
4 rows in set (0.00 sec)
mysal> use rfi
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysgl> show tables;
 Tables in rfi
 Telescopes
 observation
 upload
3 rows in set (0.00 sec)
mysql>
```

phpMyAdmin

European Radio Astronomy Technical Forum - April, 8th – 12th 2013, Bonn


Clients

- Clients can be implemented with several languages:
 - C++
 - Php
 - java
 - python
 - Labview
 - etc.. etc...
- Web based clients can communicate with the server using web browsers


Web based clients

- The clients allow to
 - report the RFI measure with a browser;
 - retrieve the archived measures;
- The web pages are dynamically generated using php;
- Php scripts handle the connection with the database

Operator interface:report a RFI

Retrieve data from the archive

Improvements

- Define new attributes to better describe the observation to be reported;
- Make the data report more effective;
- Write new clients to be suitable for unmanned data recording for automatic monitoring equipments (labview client for lab devices?)

Conclusions

- Based on CRAF EMI and Spectrum Occupancy Database (CRAF-01-02-rev.2)
- The structure of the database is flexible (updates possible with SQL commands)
- Multi users, the access privileges can be specialized.

Conclusions

- Web based clients allow to send and retrieve RFI reports to the database through a web browser;
- New clients can be developed using the most suitable programming language;
- Made with open source software!

Contact

- mailto: spoppi at oa-cagliari.inaf.it
- DB link: http://srt-wp4.oa-cagliari.inaf.it/~rfi/rfidb/